Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 5.12 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {2; - 1;4} \right)\) và vuông góc với mặt phẳng \(\left( P \right):x + 3y - z - 1 = 0\).
Đề bài
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {2; - 1;4} \right)\) và vuông góc với mặt phẳng \(\left( P \right):x + 3y - z - 1 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\)).
Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).
Lời giải chi tiết
Vì đường thẳng \(\Delta \) vuông góc với mặt phẳng \(\left( P \right):x + 3y - z - 1 = 0\) nên đường thẳng \(\Delta \) nhận \(\overrightarrow u \left( {1;3; - 1} \right)\) là một vectơ chỉ phương. Mà đường thẳng \(\Delta \) đi qua \(A\left( {2; - 1;4} \right)\) nên:
Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + 3t\\z = 4 - t\end{array} \right.\)
Phương trình chính tắc của đường thẳng \(\Delta \) là: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{3} = \frac{{z - 4}}{{ - 1}}\).
Bài tập 5.12 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đạo hàm, tìm cực trị, hoặc khảo sát hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức đạo hàm cơ bản, cũng như các kỹ năng giải toán liên quan.
Bài tập 5.12 thường có dạng như sau: Cho hàm số f(x). Hãy tìm đạo hàm f'(x) và sử dụng đạo hàm để giải quyết các yêu cầu khác như tìm cực trị, khoảng đơn điệu, hoặc giá trị lớn nhất, nhỏ nhất của hàm số trên một khoảng cho trước.
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực đại, cực tiểu của hàm số.
Giải:
Ngoài SGK Toán 12 tập 2 - Kết nối tri thức, bạn có thể tham khảo thêm các tài liệu sau:
Bài tập 5.12 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!