Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 6.10 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên. a) Tính xác suất để vận động viên này đạt huy chương vàng; b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.
Đề bài
Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên.
a) Tính xác suất để vận động viên này đạt huy chương vàng;
b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B. Khi đó, ta có công thức sau: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).
Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Gọi A là biến cố: “Vận động viên đạt huy chương vàng”, B là biến cố: “Thành viên đội I” thì \(\overline B \) là biến cố: “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{5}{{12}};P\left( {\overline B } \right) = \frac{7}{{12}},P\left( {A|B} \right) = 0,65,P\left( {A|\overline B } \right) = 0,55\)
a) Theo công thức xác suất toàn phần ta có:\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{5}{{12}}.0,65 + \frac{7}{{12}}.0,55 = \frac{{71}}{{120}}\)
Vậy xác suất để vận động viên này đạt huy chương vàng là \(\frac{{71}}{{120}}\)
b) Ta cần tính: \(P\left( {B|A} \right)\). Theo công thức Bayes ta có:
\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{5}{{12}}.0,65}}{{\frac{{71}}{{120}}}} = \frac{{65}}{{142}}\)
Bài tập 6.10 trang 78 SGK Toán 12 tập 2 thuộc chương trình học môn Toán lớp 12, cụ thể là chương về Ứng dụng đạo hàm để khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị của hàm số, từ đó xác định các điểm cực đại, cực tiểu và vẽ đồ thị hàm số.
Bài tập 6.10 thường có dạng như sau: Cho hàm số y = f(x). Hãy tìm:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm các điểm cực trị của hàm số.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | NB | ĐB | NB |
Để hiểu rõ hơn về phương pháp giải bài tập 6.10, bạn có thể tham khảo thêm các tài liệu sau:
Bài tập 6.10 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng đạo hàm để khảo sát hàm số. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!