Logo Header
  1. Môn Toán
  2. Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Trong không gian Oxyz, cho điểm \(M\left( {2; - 1;3} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là A. \(3x - 6y + 2z + 6 = 0\). B. \(3x - 6y + 2z + 6 = 0\). C. \(3x - 2y + 2z - 1 = 0\). D. \(3x - 6y + 2z - 1 = 0\).

Đề bài

Trong không gian Oxyz, cho điểm \(M\left( {2; - 1;3} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là

A. \(3x - 6y + 2z + 6 = 0\).

B. \(3x - 6y + 2z + 6 = 0\).

C. \(3x - 2y + 2z - 1 = 0\).

D. \(3x - 6y + 2z - 1 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về phương trình đoạn chắn của mặt phẳng để tính: Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right)\) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) \(\left( {a,b,c \ne 0} \right)\). Khi đó, mặt phẳng \(\left( \alpha \right)\) có phương trình \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).

Lời giải chi tiết

Ta có: \(A\left( {2;0;0} \right),B\left( {0; - 1;0} \right),\left( {0;0;3} \right)\)

Khi đó, mặt phẳng (ABC) có phương trình đoạn chắn là:

\(\frac{x}{2} - \frac{y}{1} + \frac{z}{3} = 1 \Rightarrow 3x - 6y + 2z - 6 = 0\)

Vậy phương trình mặt phẳng (ABC) là: \(3x - 6y + 2z - 6 = 0\)

Không có đáp án đúng

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 12 trang 91 SGK Toán 12 tập 2 thuộc chương trình học môn Toán lớp 12, cụ thể là chương về Ứng dụng đạo hàm để khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số. Việc giải bài tập này đòi hỏi sự hiểu biết vững chắc về các khái niệm và kỹ năng đạo hàm.

Nội dung bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 12 thường bao gồm các hàm số bậc ba hoặc bậc bốn, yêu cầu học sinh:

  • Tính đạo hàm cấp nhất và đạo hàm cấp hai của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến và nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Để giải bài tập này một cách hiệu quả, bạn có thể áp dụng các bước sau:

  1. Bước 1: Tính đạo hàm cấp nhất (y'). Sử dụng các quy tắc đạo hàm cơ bản để tính đạo hàm của hàm số.
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình y' = 0 để tìm các giá trị x mà tại đó đạo hàm bằng không. Các giá trị này là hoành độ của các điểm cực trị.
  3. Bước 3: Xác định loại điểm cực trị. Sử dụng đạo hàm cấp hai (y'') để xác định loại điểm cực trị. Nếu y'' > 0 tại một điểm cực trị, đó là điểm cực tiểu. Nếu y'' < 0 tại một điểm cực trị, đó là điểm cực đại.
  4. Bước 4: Xác định khoảng đồng biến và nghịch biến. Dựa vào dấu của đạo hàm cấp nhất (y') để xác định khoảng đồng biến và nghịch biến của hàm số. Nếu y' > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu y' < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  5. Bước 5: Vẽ đồ thị hàm số. Sử dụng các thông tin đã tìm được (điểm cực trị, khoảng đồng biến, nghịch biến) để vẽ đồ thị hàm số.

Ví dụ minh họa giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập: Xét hàm số y = x3 - 3x2 + 2.

Giải:

  1. Tính đạo hàm cấp nhất: y' = 3x2 - 6x
  2. Tìm các điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định loại điểm cực trị: y'' = 6x - 6. Tại x = 0, y'' = -6 < 0, vậy x = 0 là điểm cực đại. Tại x = 2, y'' = 6 > 0, vậy x = 2 là điểm cực tiểu.
  4. Xác định khoảng đồng biến và nghịch biến:
    • Trên khoảng (-∞; 0), y' > 0, hàm số đồng biến.
    • Trên khoảng (0; 2), y' < 0, hàm số nghịch biến.
    • Trên khoảng (2; +∞), y' > 0, hàm số đồng biến.
  5. Vẽ đồ thị hàm số: Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số.

Lưu ý khi giải bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Khi giải bài tập này, bạn cần lưu ý:

  • Kiểm tra kỹ các quy tắc đạo hàm để tránh sai sót.
  • Sử dụng đạo hàm cấp hai để xác định chính xác loại điểm cực trị.
  • Vẽ đồ thị hàm số một cách cẩn thận để đảm bảo tính chính xác.

Tài liệu tham khảo

Ngoài SGK Toán 12 tập 2 - Kết nối tri thức, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín.
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube.

Kết luận

Bài tập 12 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12