Logo Header
  1. Môn Toán
  2. Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức. Bài viết này được cung cấp bởi giaitoan.edu.vn, một nền tảng học toán online uy tín và chất lượng.

Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau: a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x + \sqrt {1 - {x^2}} \)

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\);

b) \(y = x + \sqrt {1 - {x^2}} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.

Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

a) Ta có: \(y' = {\left( {\frac{{x + 1}}{{\sqrt {{x^2} + 1} }}} \right)'} = \frac{{\sqrt {{x^2} + 1} - \frac{{2x\left( {x + 1} \right)}}{{2\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \frac{{{x^2} + 1 - {x^2} - x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }} = \frac{{1 - x}}{{\sqrt {{{\left( {{x^2} + 1} \right)}^3}} }}\)

\(y' = 0 \Rightarrow x = 1 \in \left[ { - 1;2} \right]\)

Ta có: \(y\left( { - 1} \right) = 0;y\left( 1 \right) = \frac{2}{{\sqrt 2 }}=\sqrt 2 ;y\left( 2 \right) = \frac{3}{{\sqrt 5 }}\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = y\left( 1 \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( { - 1} \right) = 0\)

b) Tập xác định của hàm số là: \(D = \left[ { - 1;1} \right]\)

\(y' = 1 + \frac{{ - x}}{{\sqrt {1 - {x^2}} }},y' = 0 \Leftrightarrow \frac{{\sqrt {1 - {x^2}} - x}}{{\sqrt {1 - {x^2}} }} = 0 \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} = {x^2}\\ - 1 < x < 1\end{array} \right. \Leftrightarrow x = \pm \frac{{\sqrt 2 }}{2}\)

\(y\left( {\frac{{ - \sqrt 2 }}{2}} \right) = 0;y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ,y\left( { - 1} \right) = - 1;y\left( 1 \right) = 1\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = - 1\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và xét dấu đạo hàm để xác định tính đơn điệu của hàm số.

Nội dung bài tập 17

Bài tập 17 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số đã cho.
  • Xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Tìm cực trị của hàm số.

Lời giải chi tiết bài tập 17

Câu a:

Hàm số: y = x3 - 3x2 + 2

Đạo hàm: y' = 3x2 - 6x

Xét dấu y':

  • y' = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
  • Bảng xét dấu:

    x-∞02+∞
    y'+-+
    yNBĐBNB

Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0, giá trị cực đại là y(0) = 2.

Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y(2) = -2.

Câu b:

(Tương tự như câu a, trình bày chi tiết lời giải)

Câu c:

(Tương tự như câu a, trình bày chi tiết lời giải)

Mẹo giải bài tập về đạo hàm

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc đạo hàm của tổng, hiệu, tích, thương.
  • Biết cách xét dấu đạo hàm để xác định tính đơn điệu của hàm số.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc, gia tốc trong vật lý.
  • Tìm điểm cực trị trong kinh tế.
  • Xây dựng các mô hình toán học để mô tả các hiện tượng tự nhiên.

Kết luận

Bài tập 17 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Hãy truy cập giaitoan.edu.vn để xem thêm nhiều bài giải Toán 12 khác và các tài liệu học tập hữu ích.

Tài liệu, đề thi và đáp án Toán 12