Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 15 SGK Toán 7 tập 1 - Chân trời sáng tạo. Bài học này tập trung vào việc vận dụng các kiến thức về số tự nhiên, phép tính và các tính chất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả. Hãy cùng chúng tôi khám phá lời giải chi tiết ngay sau đây!
Tính:
Đề bài
Tính:
a) \(\frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)\)
b) \(\left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)\)
c) \(\left[ \left( \frac{{ - 2}}{3}\right) + \frac{3}{7} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}\)
d) \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)\)
e) \(\frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Áp dụng tính chất phân phối của phép nhân với phép cộng: a.c+b.c=(a+b).c
- Áp dụng tính chất giao hoán của phép cộng
Lời giải chi tiết
a) \(\frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)\)
\(\begin{array}{l}= \frac{3}{7}.\left( { - \frac{1}{9} + \frac{-2}{3}} \right)\\ = \frac{3}{7}.\left( { - \frac{1}{9} - \frac{6}{9}} \right)\\ = \frac{3}{7}.\frac{{ - 7}}{9} = \frac{{ - 1}}{3}\end{array}\)
b) \(\left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)\)
\(\begin{array}{l}= \frac{{ - 7}}{{13}}.\left( {\frac{5}{{12}} + \frac{7}{{12}}} \right) + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}}.1 + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}} + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 13}}{{13}}\\ = -1\end{array}\)
c) \(\left[ \left( \frac{{ - 2}}{3}\right) + \frac{3}{7}\right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}\)
\(\begin{array}{l}= \left[ \left( \frac{{ - 2}}{3}\right) + \frac{3}{7}\right].\frac{9}{5} + \left( {\frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left( {\frac{{ - 2}}{3} + \frac{3}{7} + \frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left[ {\left( {\frac{{ - 2}}{3} - \frac{1}{3}} \right) + \left( {\frac{3}{7} + \frac{4}{7}} \right)} \right].\frac{9}{5}\\ = \left( { - 1 + 1} \right).\frac{9}{5}\\ = 0.\frac{9}{5} = 0\end{array}\)
d) \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)\)
\(\begin{array}{l}= \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{{10}}{{15}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 9}}{15}\\= \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 3}}{5}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{5}{9}.\frac{{ - 5}}{3}\\ = \frac{5}{9}.\left( {\frac{{ - 22}}{3} - \frac{5}{3}} \right)\\ = \frac{5}{9}.\frac{-27}{3}= \frac{5}{9}.\left( { - 9} \right) = - 5\end{array}\)
e) \(\frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)\)
\(\begin{array}{l}= \frac{3}{5} + \frac{3}{{11}} + \frac{3}{7} - \frac{2}{{97}} - \frac{1}{{35}} - \frac{3}{4} - \frac{{23}}{{44}}\\ = \left( {\frac{3}{5} + \frac{3}{7} - \frac{1}{{35}}} \right) + \left( {\frac{3}{{11}} - \frac{3}{4} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \left( {\frac{{21}}{{35}} + \frac{{15}}{{35}} - \frac{1}{{35}}} \right) + \left( {\frac{{12}}{{44}} - \frac{{33}}{{44}} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \frac{35}{{35}}+ \frac{-44}{{44}}- \frac{2}{{97}}\\= 1 + \left( { - 1} \right) - \frac{2}{{97}}\\ = - \frac{2}{{97}}\end{array}\)
Bài 4 trang 15 SGK Toán 7 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về các phép toán cơ bản và cách áp dụng vào giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và dễ hiểu, giúp các em hiểu rõ cách làm bài và tự tin hơn trong quá trình học tập.
Bài 4 yêu cầu học sinh thực hiện các phép tính và so sánh kết quả. Cụ thể, bài tập thường bao gồm các dạng như:
Để giải bài 4 trang 15 SGK Toán 7 tập 1 - Chân trời sáng tạo, các em cần nắm vững các kiến thức sau:
Dưới đây là ví dụ về cách giải một bài tập trong bài 4:
Ví dụ: Tính giá trị của biểu thức: 12 + 5 * 3 - 8
Giải:
Để giải bài tập Toán 7 hiệu quả, các em có thể áp dụng một số mẹo sau:
Kiến thức về các phép toán cơ bản và tính chất của phép toán có ứng dụng rất lớn trong cuộc sống hàng ngày. Ví dụ, khi tính tiền mua hàng, tính lãi suất ngân hàng, hoặc tính diện tích, thể tích của các vật thể. Việc nắm vững kiến thức này sẽ giúp các em giải quyết các vấn đề thực tế một cách dễ dàng và hiệu quả.
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong SGK Toán 7 tập 1 - Chân trời sáng tạo hoặc các bài tập trên các trang web học toán online. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng, tự tin hơn trong các kỳ thi.
Bài 4 trang 15 SGK Toán 7 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về các phép toán cơ bản và cách áp dụng vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán.
Phép toán | Ví dụ |
---|---|
Cộng | 5 + 3 = 8 |
Trừ | 10 - 4 = 6 |
Nhân | 2 * 6 = 12 |
Chia | 15 / 3 = 5 |