Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 7 tập 1 - Chân trời sáng tạo. Mục 1 trang 22 là một phần quan trọng trong chương trình học, đòi hỏi học sinh nắm vững kiến thức cơ bản về số hữu tỉ và các phép toán trên số hữu tỉ.
Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn, vì vậy đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các ví dụ minh họa để giúp bạn hiểu rõ hơn về bài học.
Tính rồi so sánh kết quả của:.... Cho biểu thức:
Tính rồi so sánh kết quả của:
a)\(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) và \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3};\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\) và \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\)
Phương pháp giải:
- Quy đồng mẫu các phân số
- Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau.
- So sánh kết quả các phép tính
Lời giải chi tiết:
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
Cho biểu thức:
\(A = \left( {7 - \frac{2}{5} + \frac{1}{3}} \right) - \left( {6 - \frac{4}{3} + \frac{6}{5}} \right) - \left( {2 - \frac{8}{5} + \frac{5}{3}} \right)\)
Phương pháp giải:
Áp dụng quy tắc bỏ dấu ngoặc rồi áp dụng tính chất giao hoán và kết hợp để nhóm các số hạng.
Lời giải chi tiết:
\(\begin{array}{l}A = \left( {7 - \frac{2}{5} + \frac{1}{3}} \right) - \left( {6 - \frac{4}{3} + \frac{6}{5}} \right) - \left( {2 - \frac{8}{5} + \frac{5}{3}} \right)\\A = 7 - \frac{2}{5} + \frac{1}{3} - 6 + \frac{4}{3} - \frac{6}{5} - 2 + \frac{8}{5} - \frac{5}{3}\\A = \left( {7 - 6 - 2} \right) + \left( { - \frac{2}{5} - \frac{6}{5} + \frac{8}{5}} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
Chú ý:
Trong phép tính chỉ có phép cộng trừ, ta có thể đổi chỗ các số hạng tùy ý kèm theo dấu của chúng.
Video hướng dẫn giải
Tính rồi so sánh kết quả của:
a)\(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) và \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3};\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\) và \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\)
Phương pháp giải:
- Quy đồng mẫu các phân số
- Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau.
- So sánh kết quả các phép tính
Lời giải chi tiết:
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
Cho biểu thức:
\(A = \left( {7 - \frac{2}{5} + \frac{1}{3}} \right) - \left( {6 - \frac{4}{3} + \frac{6}{5}} \right) - \left( {2 - \frac{8}{5} + \frac{5}{3}} \right)\)
Phương pháp giải:
Áp dụng quy tắc bỏ dấu ngoặc rồi áp dụng tính chất giao hoán và kết hợp để nhóm các số hạng.
Lời giải chi tiết:
\(\begin{array}{l}A = \left( {7 - \frac{2}{5} + \frac{1}{3}} \right) - \left( {6 - \frac{4}{3} + \frac{6}{5}} \right) - \left( {2 - \frac{8}{5} + \frac{5}{3}} \right)\\A = 7 - \frac{2}{5} + \frac{1}{3} - 6 + \frac{4}{3} - \frac{6}{5} - 2 + \frac{8}{5} - \frac{5}{3}\\A = \left( {7 - 6 - 2} \right) + \left( { - \frac{2}{5} - \frac{6}{5} + \frac{8}{5}} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
Chú ý:
Trong phép tính chỉ có phép cộng trừ, ta có thể đổi chỗ các số hạng tùy ý kèm theo dấu của chúng.
Mục 1 trang 22 SGK Toán 7 tập 1 - Chân trời sáng tạo tập trung vào việc ôn tập và củng cố kiến thức về số hữu tỉ. Các bài tập trong mục này thường yêu cầu học sinh thực hiện các phép toán cộng, trừ, nhân, chia số hữu tỉ, so sánh số hữu tỉ và biểu diễn số hữu tỉ trên trục số.
Trước khi bắt đầu giải bài tập, học sinh cần nắm vững các khái niệm và tính chất sau:
Mục 1 trang 22 thường xuất hiện các dạng bài tập sau:
Dưới đây là hướng dẫn giải chi tiết cho từng bài tập trong mục 1 trang 22 SGK Toán 7 tập 1 - Chân trời sáng tạo:
a) 1/2 + 1/3 = ?
Để giải bài này, ta quy đồng mẫu số của hai phân số 1/2 và 1/3. Mẫu số chung nhỏ nhất của 2 và 3 là 6. Ta có:
1/2 = 3/6 và 1/3 = 2/6
Vậy, 1/2 + 1/3 = 3/6 + 2/6 = 5/6
a) -1/2 và -1/3
Để so sánh hai số âm, ta lấy giá trị tuyệt đối của chúng và so sánh. Ta có:
|-1/2| = 1/2 và |-1/3| = 1/3
Vì 1/2 > 1/3 nên -1/2 < -1/3
Để giải nhanh các bài tập về số hữu tỉ, bạn có thể áp dụng các mẹo sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập sau:
Giải mục 1 trang 22 SGK Toán 7 tập 1 - Chân trời sáng tạo là một bước quan trọng trong quá trình học Toán 7. Bằng cách nắm vững lý thuyết, hiểu rõ các dạng bài tập và áp dụng các mẹo giải nhanh, bạn có thể tự tin giải quyết các bài tập một cách hiệu quả. Chúc bạn học tốt!
Khái niệm | Giải thích |
---|---|
Số hữu tỉ | Số có thể biểu diễn dưới dạng phân số a/b |
Phân số tối giản | Phân số mà tử và mẫu không có ước chung |