Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 101 trang 42 sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{3{rm{x}} - 2}}{{1 - x}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = 3). c) Điểm (M) nằm trên đồ thị hàm số có hoành độ ({x_0} ne 1) thì tung độ là ({y_0} = - 3 - frac{1}{{{x_0} - 1}}). d) Tích khoảng cách từ điểm (M) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Cho hàm số \(y = \frac{{3{\rm{x}} - 2}}{{1 - x}}\). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\).b) Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 3\).c) Điểm \(M\) nằm trên đồ thị hàm số có hoành độ \({x_0} \ne 1\) thì tung độ là \({y_0} = - 3 - \frac{1}{{{x_0} - 1}}\).d) Tích khoảng cách từ điểm \(M\) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{3{\rm{x}} - 2}}{{1 - x}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3{\rm{x}} - 2}}{{1 - x}} = - \infty \)
Vậy \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho. Vậy a) đúng.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} - 2}}{{1 - x}} = - 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} - 2}}{{1 - x}} = - 3\)
Vậy \(y = - 3\) là tiệm cận ngang của đồ thị hàm số đã cho. Vậy b) sai.
• Điểm \(M\) nằm trên đồ thị hàm số có hoành độ \({x_0} \ne 1\) thì tung độ là:
\({y_0} = \frac{{3{{\rm{x}}_0} - 2}}{{1 - {x_0}}} = \frac{{ - 3\left( {1 - {x_0}} \right) + 1}}{{1 - {x_0}}} = - 3 + \frac{1}{{1 - {x_0}}} = - 3 - \frac{1}{{{x_0} - 1}}\).
Vậy c) đúng.
• Xét điểm \(M\left( {{x_0}; - 3 - \frac{1}{{{x_0} - 1}}} \right)\).
Khoảng cách từ \(M\) đến tiệm cận đứng bằng: \(\left| {{x_0} - 1} \right|\).
Khoảng cách từ \(M\) đến tiệm cận ngang bằng: \(\left| { - 3 - \frac{1}{{{x_0} - 1}} - \left( { - 3} \right)} \right| = \left| { - \frac{1}{{{x_0} - 1}}} \right| = \frac{1}{{\left| {{x_0} - 1} \right|}}\).
Tích khoảng cách từ điểm \(M\) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số bằng: \(\left| {{x_0} - 1} \right|.\frac{1}{{\left| {{x_0} - 1} \right|}} = 1\).
Vậy d) đúng.
a) Đ.
b) S.
c) Đ.
d) Đ.
Bài 101 trang 42 sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tìm cực trị của hàm số, từ đó xác định tính đơn điệu và vẽ đồ thị hàm số.
Bài 101 thường bao gồm các dạng bài tập sau:
Để giải bài 101 trang 42 sách bài tập Toán 12 - Cánh Diều, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài tập.
Bước 1: Tập xác định của hàm số là D = R.
Bước 2: Đạo hàm bậc nhất: y' = 3x2 - 6x.
Bước 3: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
Bước 4: Lập bảng biến thiên:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bước 5: Hàm số đạt cực đại tại x = 0, f(0) = 2 và đạt cực tiểu tại x = 2, f(2) = -2.
Bước 6: Đạo hàm bậc hai: y'' = 6x - 6.
Bước 7: Tại x = 0, y'' = -6 < 0, hàm số đạt cực đại. Tại x = 2, y'' = 6 > 0, hàm số đạt cực tiểu.
Bước 8: Giải phương trình y'' = 0, ta được x = 1. Đây là điểm uốn của đồ thị hàm số.
Bước 9: Dựa trên các thông tin trên, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2.
Bài 101 trang 42 sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!