Logo Header
  1. Môn Toán
  2. Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diều

Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diều

Giải bài 70 trang 70 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 70 trang 70 Sách bài tập Toán 12 - Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để tự tin giải quyết các bài toán tương tự.

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x + 2}}{9} = \frac{{y - 1}}{{27}} = \frac{{z - 3}}{{ - 27}}\) và \({\Delta _2}:\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 7}}{3}\); b) \({\Delta _1}:\frac{{x + 1}}{{ - 2}} = \frac{{y - 6}}{5} = \frac{{z + 3}}{{ - 4}}\) và \({\Delta _2}:\frac{{x + 13}}{7} = \frac{{y + 9}}{5} = \frac{{z + 15}}{8}\); c) \({\Delta _1}:\frac{{x + 3}}{2} = \frac{{y + 6

Đề bài

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau:

a) \({\Delta _1}:\frac{{x + 2}}{9} = \frac{{y - 1}}{{27}} = \frac{{z - 3}}{{ - 27}}\) và \({\Delta _2}:\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 7}}{3}\);

b) \({\Delta _1}:\frac{{x + 1}}{{ - 2}} = \frac{{y - 6}}{5} = \frac{{z + 3}}{{ - 4}}\) và \({\Delta _2}:\frac{{x + 13}}{7} = \frac{{y + 9}}{5} = \frac{{z + 15}}{8}\);

c) \({\Delta _1}:\frac{{x + 3}}{2} = \frac{{y + 6}}{3} = \frac{{z + 3}}{2}\) và \({\Delta _2}:\frac{{x + 17}}{2} = \frac{{y - 33}}{{ - 3}} = \frac{{z + 16}}{2}\).

Phương pháp giải - Xem chi tiếtGiải bài 70 trang 70 sách bài tập toán 12 - Cánh diều 1

‒ Xét vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) với: \({\Delta _1}\) đi qua điểm \({M_1}\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) và \({\Delta _2}\) đi qua điểm \({M_2}\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \):

• \({\Delta _1}\parallel {\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] \ne \overrightarrow 0 \end{array} \right.\).

• \({\Delta _1}\) cắt \({\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 0\end{array} \right.\).

• \({\Delta _1}\) và \({\Delta _2}\) chéo nhau nếu \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} \ne 0\).

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 2;1;3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {9;27; - 27} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 1;3;7} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1; - 3;3} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {0;0;0} \right) = \overrightarrow 0 ,\overrightarrow {{M_1}{M_2}} = \left( {1;2;4} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] = \left( {162; - 63; - 9} \right) \ne \overrightarrow 0 \). Vậy \({\Delta _1}\parallel {\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 1;6; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( { - 2;5; - 4} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 13; - 9; - 15} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {7;5;8} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {60; - 12; - 45} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 12; - 15; - 12} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 60.\left( { - 12} \right) - 12.\left( { - 15} \right) - 45.\left( { - 12} \right) = 0\). Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

c) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 3; - 6; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2;3;2} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 17;33; - 16} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2; - 3;2} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {12;0; - 12} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 14;39; - 13} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 12.\left( { - 14} \right) + 0.39 - 12.\left( { - 13} \right) = - 12 \ne 0\). Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 70 trang 70 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 70 trang 70 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề quan trọng như số phức, hàm số, đạo hàm, tích phân, và hình học không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, đòi hỏi sự tư duy logic và khả năng phân tích.

Nội dung chi tiết bài 70 trang 70

Bài 70 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Bài tập về số phức – thực hiện các phép toán cộng, trừ, nhân, chia số phức, tìm mô-đun của số phức, giải phương trình bậc hai với hệ số phức.
  • Dạng 2: Bài tập về hàm số – xác định tập xác định, tập giá trị, tìm điểm cực trị, vẽ đồ thị hàm số.
  • Dạng 3: Bài tập về đạo hàm – tính đạo hàm của hàm số, ứng dụng đạo hàm để giải các bài toán về cực trị, khoảng đơn điệu.
  • Dạng 4: Bài tập về tích phân – tính tích phân xác định, ứng dụng tích phân để tính diện tích hình phẳng.
  • Dạng 5: Bài tập về hình học không gian – tính khoảng cách giữa hai điểm, giữa điểm và mặt phẳng, tính góc giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.

Lời giải chi tiết bài 70 trang 70 (Ví dụ)

Bài toán: (Giả định một bài toán cụ thể từ bài 70, ví dụ về số phức)

Cho số phức z = 2 + 3i. Tính mô-đun của z.

Lời giải:

Mô-đun của số phức z = a + bi được tính theo công thức |z| = √(a2 + b2). Trong trường hợp này, a = 2 và b = 3. Do đó:

|z| = √(22 + 32) = √(4 + 9) = √13

Vậy, mô-đun của số phức z = 2 + 3i là √13.

Mẹo giải bài tập Toán 12 hiệu quả

  1. Nắm vững kiến thức cơ bản: Đảm bảo bạn hiểu rõ các định nghĩa, định lý, công thức liên quan đến từng chủ đề.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  3. Sử dụng sơ đồ Venn: Khi giải các bài toán về tập hợp, sơ đồ Venn có thể giúp bạn hình dung rõ hơn về mối quan hệ giữa các tập hợp.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  5. Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô, bạn bè hoặc tìm kiếm trên internet.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online: giaitoan.edu.vn, VietJack, Hoc24,…
  • Các kênh YouTube về toán học: Thầy Nguyễn Thành Nam, Vted,…
  • Các diễn đàn toán học: MathScope,…

Kết luận

Giải bài 70 trang 70 Sách bài tập Toán 12 - Cánh Diều đòi hỏi sự nắm vững kiến thức và kỹ năng giải toán. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo học tập hữu ích trên đây, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12