Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 17 trang 14 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
(int {cos left( { - x} right)dx} ) bằng: A. (sin x + C). B. (cos x + C). C. ( - sin x + C). D. ( - cos x + C).
Đề bài
\(\int {\cos \left( { - x} \right)dx} \) bằng:
A. \(\sin x + C\).
B. \(\cos x + C\).
C. \( - \sin x + C\).
D. \( - \cos x + C\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng biến đổi lượng giác.
‒ Sử dụng công thức: \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
\(\int {\cos \left( { - x} \right)dx} = \int {\cos xdx} = \sin x + C\).
Chọn A.
Bài 17 trang 14 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và đạo hàm của hàm số lượng giác để giải quyết các bài toán cụ thể.
Bài 17 thường bao gồm các dạng bài tập sau:
Để giải bài 17 trang 14 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
f'(x) = 6x + 2
Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).
Giải:
g'(x) = cos(x)
g''(x) = -sin(x)
Ngoài sách bài tập Toán 12 - Cánh Diều, bạn có thể tham khảo thêm các tài liệu sau:
Bài 17 trang 14 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!