Logo Header
  1. Môn Toán
  2. Giải bài 83 trang 38 sách bài tập toán 12 - Cánh diều

Giải bài 83 trang 38 sách bài tập toán 12 - Cánh diều

Giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hàm số (fleft( x right)) xác định trên (mathbb{R}) và có bảng xét dấu đạo hàm (f'left( x right)) như sau: Khẳng định nào dưới đây đúng? A. (fleft( { - 6} right) > fleft( { - 5} right)). B. (fleft( 1 right) > fleft( 2 right)). C. (fleft( 5 right) < fleft( 7 right)). D. (fleft( { - 3} right) > fleft( { - 1} right)).

Đề bài

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm \(f'\left( x \right)\) như sau:

Giải bài 83 trang 38 sách bài tập toán 12 - Cánh diều 1

Khẳng định nào dưới đây đúng?

A. \(f\left( { - 6} \right) > f\left( { - 5} \right)\). B. \(f\left( 1 \right) > f\left( 2 \right)\).

C. \(f\left( 5 \right) < f\left( 7 \right)\). D. \(f\left( { - 3} \right) > f\left( { - 1} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 83 trang 38 sách bài tập toán 12 - Cánh diều 2

Lập bảng biến thiên, dựa vào bảng biến thiên:

‒ Hàm số đồng biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)

‒ Hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)

Lời giải chi tiết

+ Đáp án A: Hàm số đồng biến trên \(\left( { - 6; - 5} \right)\) nên \(f\left( { - 6} \right) < f\left( { - 5} \right)\). Vậy A sai.

+ Đáp án B: Hàm số đồng biến trên \(\left( {1;2} \right)\) nên \(f\left( 1 \right) < f\left( 2 \right)\). Vậy B sai.

+ Đáp án C: Hàm số nghịch biến trên \(\left( {5;7} \right)\) nên \(f\left( 5 \right) > f\left( 7 \right)\). Vậy C sai.

+ Đáp án D: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(f\left( { - 3} \right) > f\left( { - 1} \right)\). Vậy D đúng.

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 83 trang 38 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm hợp, và các phương pháp giải phương trình, bất phương trình để tìm ra nghiệm và đánh giá tính chất của hàm số.

Nội dung bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều

Bài 83 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn, giới hạn vô cùng, tiệm cận).
  • Dạng 4: Giải các bài toán ứng dụng đạo hàm (tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước).

Hướng dẫn giải chi tiết bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều

Để giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Kiến thức về đạo hàm: Định nghĩa đạo hàm, các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm hợp, đạo hàm của hàm lượng giác, hàm mũ, hàm logarit.
  2. Ứng dụng của đạo hàm: Sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, giải các bài toán tối ưu.
  3. Kỹ năng giải toán: Rèn luyện kỹ năng biến đổi đại số, giải phương trình, bất phương trình, và phân tích bài toán để tìm ra phương pháp giải phù hợp.

Ví dụ minh họa giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực trị của hàm số.

Giải:

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2 và đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều

Khi giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng đúng các công thức đạo hàm và quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nâng cao kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Để học tốt Toán 12 và giải bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Bài 83 trang 38 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12