Logo Header
  1. Môn Toán
  2. Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều

Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều

Giải bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\). B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\). C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường

Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều 1

Khẳng định nào sau đây là đúng?

A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\).

B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\).

C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường thẳng \(y = - 2\).

D. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 2\) và tiệm cận ngang là đường thẳng \(y = 2\).

Phương pháp giải - Xem chi tiếtGiải bài 54 trang 24 sách bài tập toán 12 - Cánh diều 2

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Dựa vào bảng biến thiên ta có:

• \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = + \infty \).

Vậy \(x = - 2\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\).

Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều: Hướng dẫn chi tiết và dễ hiểu

Bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập chương 3: Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán thực tế.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 54 trang 24, học sinh cần xác định hàm số cần tìm đạo hàm, các quy tắc đạo hàm phù hợp, và thực hiện các phép tính một cách chính xác.

Lời giải chi tiết bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết từng bước:

  1. Bước 1: Xác định hàm số cần tìm đạo hàm.
  2. Bước 2: Áp dụng các quy tắc đạo hàm phù hợp (quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp).
  3. Bước 3: Thực hiện các phép tính đạo hàm một cách chính xác.
  4. Bước 4: Rút gọn biểu thức đạo hàm (nếu có thể).
  5. Bước 5: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ, nếu đề bài yêu cầu tìm đạo hàm của hàm số y = x2 + 3x - 2, ta sẽ thực hiện như sau:

  • Đạo hàm của x2 là 2x.
  • Đạo hàm của 3x là 3.
  • Đạo hàm của -2 là 0.

Vậy, đạo hàm của hàm số y = x2 + 3x - 2 là y' = 2x + 3.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 54 trang 24, Sách bài tập Toán 12 - Cánh Diều còn có nhiều bài tập tương tự về đạo hàm. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:

  • Phương pháp đặt ẩn phụ: Sử dụng phương pháp này khi hàm số có cấu trúc phức tạp.
  • Phương pháp biến đổi đại số: Sử dụng phương pháp này để đơn giản hóa biểu thức đạo hàm.
  • Phương pháp sử dụng công thức đạo hàm: Nắm vững các công thức đạo hàm cơ bản để áp dụng một cách linh hoạt.

Luyện tập thêm để nâng cao kỹ năng

Để nâng cao kỹ năng giải toán đạo hàm, bạn nên luyện tập thêm với các bài tập khác trong Sách bài tập Toán 12 - Cánh Diều và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tham gia các khóa học toán online hoặc tìm kiếm sự giúp đỡ từ các giáo viên, bạn bè.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm là một công cụ toán học quan trọng có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm được sử dụng để tính vận tốc và gia tốc của một vật thể.
  • Tìm cực trị của hàm số: Trong kinh tế, đạo hàm được sử dụng để tìm cực trị của hàm số, giúp tối ưu hóa lợi nhuận hoặc chi phí.
  • Phân tích sự thay đổi: Trong các lĩnh vực khác, đạo hàm được sử dụng để phân tích sự thay đổi của một đại lượng theo thời gian hoặc theo các yếu tố khác.

Tổng kết

Bài 54 trang 24 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải các bài tập toán đạo hàm và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12