Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 7 trang 92 sách bài tập Toán 12 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng kiến thức vào các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.

Một cuộc khảo sát xác định số năm đã sử dụng của 160 chiếc ô tô. Kết quả điều tra được cho trong Bảng 10. a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó. b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng phần mười).

Đề bài

Một cuộc khảo sát xác định số năm đã sử dụng của 160 chiếc ô tô. Kết quả điều tra được cho trong Bảng 10.

Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều 1

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng phần mười).

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 92 sách bài tập toán 12 - Cánh diều 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\).

+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Lời giải chi tiết

a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 20 - 0 = 20\) (năm).

b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{160}}{4} = 40\).

Nhóm 3 có đầu mút trái \(s = 8\), độ dài \(h = 4\), tần số của nhóm \({n_3} = 37\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 27\).

Ta có: \({Q_1} = s + \left( {\frac{{40 - c{f_2}}}{{{n_3}}}} \right).h = 8 + \left( {\frac{{40 - 27}}{{37}}} \right).4 = \frac{{348}}{{37}}\) (năm).

Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.160}}{4} = 120\).

Nhóm 4 có đầu mút trái \(t = 12\), độ dài \(l = 4\), tần số của nhóm \({n_4} = 57\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 64\).

Ta có: \({Q_3} = t + \left( {\frac{{120 - c{f_3}}}{{{n_4}}}} \right).l = 12 + \left( {\frac{{120 - 64}}{{57}}} \right).4 = \frac{{908}}{{57}}\) (năm).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = \frac{{908}}{{57}} - \frac{{348}}{{37}} \approx 6,5\) (năm).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều: Tổng quan

Bài 7 trang 92 sách bài tập Toán 12 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc tính đạo hàm của hàm số, xét tính đơn điệu của hàm số và tìm cực trị. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.

Nội dung bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số. Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit.
  • Dạng 2: Xét tính đơn điệu của hàm số. Yêu cầu xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Dạng 3: Tìm cực trị của hàm số. Yêu cầu tìm điểm cực đại, cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán thực tế. Ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước.

Phương pháp giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Để giải quyết bài tập 7 trang 92 sách bài tập Toán 12 - Cánh diều một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức tính đạo hàm cơ bản. Ví dụ: đạo hàm của x^n, sinx, cosx, e^x, ln(x),...
  2. Sử dụng thành thạo các quy tắc tính đạo hàm. Ví dụ: quy tắc tích, quy tắc thương, quy tắc hàm hợp.
  3. Biết cách xét dấu đạo hàm để xác định tính đơn điệu của hàm số.
  4. Biết cách tìm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  5. Rèn luyện kỹ năng giải toán và áp dụng kiến thức vào các bài toán thực tế.

Ví dụ minh họa giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

Ví dụ: Tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1.

Giải:

f'(x) = 3x^2 - 4x + 5

Lưu ý khi giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều

  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng công thức và quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nâng cao kỹ năng giải toán.

Tài liệu tham khảo

Ngoài sách bài tập Toán 12 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh diều
  • Các bài giảng trực tuyến về đạo hàm
  • Các trang web học toán online

Kết luận

Bài 7 trang 92 sách bài tập Toán 12 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12