Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 36 trang 76 sách bài tập Toán 12 Cánh Diều. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Cho hai điểm (Mleft( {5;2; - 3} right)) và (Nleft( {1; - 4;5} right)). Trung điểm của đoạn thẳng (MN) có toạ độ là: A. (left( {4;6; - 8} right)). B. (left( {2;3; - 4} right)). C. (left( {6; - 2;2} right)). D. (left( {3; - 1;1} right)).
Đề bài
Cho hai điểm \(M\left( {5;2; - 3} \right)\) và \(N\left( {1; - 4;5} \right)\). Trung điểm của đoạn thẳng \(MN\) có toạ độ là:
A. \(\left( {4;6; - 8} \right)\)
B. \(\left( {2;3; - 4} \right)\)
C. \(\left( {6; - 2;2} \right)\)
D. \(\left( {3; - 1;1} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức toạ độ trung điểm \(M\) của đoạn thẳng \(AB\):
\(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{y_A} + {z_B}}}{2}} \right)\).
Lời giải chi tiết
Gọi \(I\) là trung điểm của đoạn thẳng \(MN\)
\(I\left( {\frac{{5 + 1}}{2};\frac{{2 + \left( { - 4} \right)}}{2};\frac{{\left( { - 3} \right) + 5}}{2}} \right) \Leftrightarrow I\left( {3; - 1;1} \right)\).
Chọn D.
Bài 36 trang 76 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Ứng dụng đạo hàm để khảo sát hàm số. Bài tập này thường tập trung vào việc tìm cực trị của hàm số, xét tính đơn điệu và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài tập này.
Bài 36 thường bao gồm các dạng bài tập sau:
Ví dụ: Xét hàm số y = x3 - 3x2 + 2.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | NB | ĐB | NB |
(NB: Đồng biến, ĐB: Nghịch biến)
Để hiểu rõ hơn về ứng dụng đạo hàm để khảo sát hàm số, bạn có thể tham khảo thêm các tài liệu sau:
Bài 36 trang 76 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng đạo hàm để khảo sát hàm số. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!