Chào mừng các em học sinh đến với lời giải chi tiết bài 22 trang 96 sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải từng bước một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Trên bàn có hai hộp bi với hình dạng và kích thước như nhau. Hộp thứ nhất có 6 viên bi đỏ, 7 viên bi vàng; còn hộp thứ hai có 10 viên bi đỏ, 11 viên bi vàng. Các viên bị có hình dạng và kích thước như nhau. Chọn ngẫu nhiên một hộp bi và từ hộp đó lấy ngẫu nhiên một viên bị. Tính xác suất để viên bị được lấy có màu đỏ.
Đề bài
Trên bàn có hai hộp bi với hình dạng và kích thước như nhau. Hộp thứ nhất có 6 viên bi đỏ, 7 viên bi vàng; còn hộp thứ hai có 10 viên bi đỏ, 11 viên bi vàng. Các viên bị có hình dạng và kích thước như nhau. Chọn ngẫu nhiên một hộp bi và từ hộp đó lấy ngẫu nhiên một viên bị. Tính xác suất để viên bị được lấy có màu đỏ.
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết
Xét các biến cố:
\(A\): “Lấy được viên bi màu đỏ”;
\(B\): “Chọn được hộp bi thứ nhất”.
Do xác suất chọn được các hộp bi là như nhau nên ta có \(P\left( B \right) = P\left( {\overline B } \right) = \frac{1}{2}\).
Hộp thứ nhất có 6 viên bi đỏ, 7 viên bi vàng nên xác suất lấy được viên bi màu đỏ ở hộp bi thứ nhất là: \(P\left( {A|B} \right) = \frac{6}{{13}}\).
Hộp thứ hai có 10 viên bi đỏ, 11 viên bi vàng nên xác suất lấy được viên bi màu đỏ ở hộp bi thứ hai là: \(P\left( {A|B} \right) = \frac{{10}}{{21}}\).
Ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{1}{2}.\frac{6}{{13}} + \frac{1}{2}.\frac{{10}}{{21}} = \frac{{128}}{{273}}\).
Bài 22 trang 96 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.
Bài 22 bao gồm các dạng bài tập sau:
Để xác định khoảng đơn điệu của hàm số, ta thực hiện các bước sau:
Ví dụ:
Cho hàm số y = x3 - 3x2 + 2. Hãy xác định khoảng đơn điệu của hàm số.
Giải:
f'(x) = 3x2 - 6x = 3x(x - 2)
f'(x) = 0 khi x = 0 hoặc x = 2
Bảng xét dấu f'(x):
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
y | NB | Giảm | Tăng |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Để tìm cực đại, cực tiểu của hàm số, ta thực hiện các bước sau:
Ví dụ:
Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực đại, cực tiểu của hàm số.
Giải:
f'(x) = 3x2 - 6x = 3x(x - 2)
f'(x) = 0 khi x = 0 hoặc x = 2
Bảng xét dấu f'(x): (như trên)
Vậy hàm số có cực đại tại x = 0, giá trị cực đại là y = 2 và có cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Các bài toán ứng dụng thường yêu cầu ta vận dụng kiến thức về đạo hàm để giải quyết các vấn đề thực tế, chẳng hạn như tìm giá trị lớn nhất, giá trị nhỏ nhất của một hàm số trong một khoảng cho trước, hoặc tìm điều kiện để một hàm số thỏa mãn một tính chất nào đó.
Để giải các bài toán này, ta thường thực hiện các bước sau:
Bài 22 trang 96 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trong bài viết này, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.