Logo Header
  1. Môn Toán
  2. Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 19 trang 48 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 19 trang 48 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho hình hộp chữ nhật (ABCD.A'B'C'D') có (AB = 2a,AD = 3a,AA' = 4aleft( {a > 0} right)). Gọi (M,N,P) lần lượt là các điểm thuộc các tia (AB,AD,AA') sao cho (AM = a,AN = 2a,AP = 3a). Tính khoảng cách từ điểm (C') đến mặt phẳng (left( {MNP} right)).

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 2a,AD = 3a,AA' = 4a\left( {a > 0} \right)\). Gọi \(M,N,P\) lần lượt là các điểm thuộc các tia \(AB,AD,AA'\) sao cho \(AM = a,AN = 2a,AP = 3a\). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {MNP} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 19 trang 48 sách bài tập toán 12 - Cánh diều 1

Gắn vào hệ trục toạ độ và sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

Lời giải chi tiết

Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên các đường thẳng \(AB,AD,AA'\) đôi một vuông góc. Do đó ta có thể gắn hệ trục toạ độ \(Oxyz\) thoả mãn \(A\left( {0;0;0} \right),B\left( {2a;0;0} \right),D\left( {0;3{\rm{a}};0} \right),\)\(A'\left( {0;0;4{\rm{a}}} \right)\).

Khi đó \(M\left( {a;0;0} \right),N\left( {0;2{\rm{a}};0} \right),P\left( {0;0;3{\rm{a}}} \right),C'\left( {2{\rm{a}};3{\rm{a}};4{\rm{a}}} \right)\).

Phương trình mặt phẳng \(\left( {MNP} \right)\) là: \(\frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{3a}} = 1\) hay \(\frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{3a}} - 1 = 0\).

Khi đó khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {MNP} \right)\) bằng:

\(d\left( {C',\left( {MNP} \right)} \right) = \frac{{\left| {\frac{{2{\rm{a}}}}{a} + \frac{{3{\rm{a}}}}{{2a}} + \frac{{4{\rm{a}}}}{{3a}} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{{2a}}} \right)}^2} + {{\left( {\frac{1}{{3a}}} \right)}^2}} }} = \frac{{\frac{{23}}{6}}}{{\sqrt {\frac{{49}}{{36{a^2}}}} }} = \frac{{23a}}{7}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 19 trang 48 Sách bài tập Toán 12 - Cánh Diều: Phân tích chi tiết và hướng dẫn giải

Bài 19 trang 48 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các kỹ năng giải phương trình và bất phương trình đạo hàm.

Nội dung chính của bài 19 trang 48

Bài 19 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đa thức, phân thức, hàm lượng giác, hàm mũ, hàm logarit.
  2. Giải phương trình đạo hàm: Tìm các giá trị của x sao cho đạo hàm của hàm số bằng 0.
  3. Khảo sát hàm số: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  4. Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc tối ưu hóa các đại lượng.

Hướng dẫn giải chi tiết bài 19 trang 48

Để giải bài 19 trang 48 sách bài tập Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Đạo hàm của các hàm số cơ bản: Đạo hàm của xn, sinx, cosx, tanx, ex, ln(x).
  • Các kỹ năng giải phương trình và bất phương trình: Giải phương trình bậc hai, phương trình lượng giác, bất phương trình.

Dưới đây là ví dụ minh họa cách giải một bài tập trong bài 19:

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Giải:

f'(x) = 3x2 + 4x - 5

Vậy, đạo hàm của hàm số f(x) là f'(x) = 3x2 + 4x - 5.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, bạn có thể áp dụng các mẹo sau:

  • Nắm vững các công thức đạo hàm: Học thuộc lòng các công thức đạo hàm cơ bản để tiết kiệm thời gian.
  • Phân tích kỹ đề bài: Xác định rõ yêu cầu của đề bài và các thông tin đã cho.
  • Sử dụng các quy tắc tính đạo hàm một cách linh hoạt: Áp dụng các quy tắc tính đạo hàm phù hợp với từng dạng bài tập.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Luyện tập thêm với các bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập đạo hàm, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các đề thi thử. Bạn có thể tìm thấy các bài tập này trên giaitoan.edu.vn.

Tầm quan trọng của việc học tốt đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật. Việc học tốt đạo hàm sẽ giúp bạn:

  • Hiểu sâu sắc hơn về các khái niệm toán học: Đạo hàm là nền tảng cho nhiều khái niệm toán học khác như tích phân, giới hạn.
  • Giải quyết các bài toán thực tế: Đạo hàm được sử dụng để giải quyết các bài toán về tối ưu hóa, vận tốc, gia tốc.
  • Chuẩn bị tốt cho các kỳ thi: Đạo hàm là một phần quan trọng trong các kỳ thi Toán THPT Quốc gia và các kỳ thi đại học.

Giaitoan.edu.vn hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 19 trang 48 sách bài tập Toán 12 Cánh Diều một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12