Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 32 trang 76 Sách bài tập Toán 12 - Cánh Diều một cách dễ hiểu nhất.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu.
Cho vectơ (overrightarrow u = left( {1;2; - 3} right)). Toạ độ của vectơ ( - 3overrightarrow u ) là: A. (left( {3;6; - 9} right)). B. (left( { - 3; - 6; - 9} right)). C. (left( {3;6;9} right)). D. (left( { - 3; - 6;9} right)).
Đề bài
Cho vectơ \(\overrightarrow u = \left( {1;2; - 3} \right)\). Toạ độ của vectơ \( - 3\overrightarrow u \) là:
A. \(\left( {3;6; - 9} \right)\)
B. \(\left( { - 3; - 6; - 9} \right)\)
C. \(\left( {3;6;9} \right)\)
D. \(\left( { - 3; - 6;9} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng biểu thức toạ độ của phép nhân một số với một vectơ:
Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) thì \(m\overrightarrow u = \left( {m{x_1};m{y_1};m{z_1}} \right)\) với \(m \in \mathbb{R}\).
Lời giải chi tiết
\( - 3\overrightarrow u = \left( {\left( { - 3} \right).1;\left( { - 3} \right).2;\left( { - 3} \right).\left( { - 3} \right)} \right) = \left( { - 3; - 6;9} \right)\).
Chọn D.
Bài 32 trang 76 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 32 thường bao gồm các dạng bài tập sau:
Để giải bài 32 trang 76 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm y' của hàm số.
Giải:
Áp dụng công thức đạo hàm của hàm số lũy thừa, ta có:
y' = 3x2 - 6x
Để học Toán 12 hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 32 trang 76 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!