Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 66 trang 69 sách bài tập Toán 12 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học tập tốt hơn và đạt kết quả cao trong các kỳ thi.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai điểm (Aleft( {0;2;0} right)) và (Bleft( {2; - 4;0} right)). a) Trung điểm (I) của đoạn thẳng (AB) có toạ độ là (left( {1; - 1;0} right)). b) (AB = 40). c) Mặt cầu (left( S right)) tâm (A) và đi qua (B) có bán kính (R = sqrt {10} ). d) Phương trình mặt cầu (left( S right)) tâm (A) và đi qua (B) là: ({left( {x - 1} right)^2} + {left( {y + 2} right)^2} + {z^2} = 10).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hai điểm \(A\left( {0;2;0} \right)\) và \(B\left( {2; - 4;0} \right)\).
a) Trung điểm \(I\) của đoạn thẳng \(AB\) có toạ độ là \(\left( {1; - 1;0} \right)\).
b) \(AB = 40\).
c) Mặt cầu \(\left( S \right)\) tâm \(A\) và đi qua \(B\) có bán kính \(R = \sqrt {10} \).
d) Phương trình mặt cầu \(\left( S \right)\) tâm \(A\) và đi qua \(B\) là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 10\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức toạ độ trung điểm \(M\) của đoạn thẳng \(AB\): \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{y_A} + {z_B}}}{2}} \right)\).
‒ Sử dụng công thức tính độ dài của vectơ \(\overrightarrow a = \left( {x;y;z} \right)\): \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \).
‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.
‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
\(I\) là trung điểm của \(AB\) nên ta có: \(I\left( {\frac{{0 + 2}}{2};\frac{{2 + \left( { - 4} \right)}}{2};\frac{{0 + 0}}{2}} \right)\) hay \(I\left( {1; - 1;0} \right)\).
Vậy a) đúng.
\(AB = \sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( { - 4 - 2} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 2\sqrt {10} \).
Vậy b) sai.
Mặt cầu \(\left( S \right)\) tâm \(A\) và đi qua \(B\) có bán kính \(R = AB = 2\sqrt {10} \).
Vậy c) sai.
Vậy phương trình mặt cầu đó là:
\({x^2} + {\left( {y - 2} \right)^2} + {z^2} = {\left( {2\sqrt {10} } \right)^2}\) hay \({x^2} + {\left( {y - 2} \right)^2} + {z^2} = 40\).
Vậy d) sai.
a) Đ.
b) S.
c) S.
d) S.
Bài 66 trang 69 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các quy tắc đạo hàm và kỹ năng biến đổi đại số là rất quan trọng để hoàn thành bài tập này một cách chính xác.
Bài 66 thường bao gồm các dạng bài tập sau:
Để giải bài 66 trang 69 sách bài tập Toán 12 Cánh Diều, chúng ta cần thực hiện các bước sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Ngoài bài 66, còn rất nhiều bài tập tương tự trong sách bài tập Toán 12 Cánh Diều. Để giải các bài tập này, bạn có thể áp dụng các phương pháp sau:
Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 66 trang 69 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!