Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 92 sách bài tập toán 12 - Cánh diều

Giải bài 8 trang 92 sách bài tập toán 12 - Cánh diều

Giải bài 8 trang 92 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 92 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán.

Một thư viện thống kê số người đến đọc sách vào buổi tối trong 30 ngày của một tháng và kết quả được cho bởi Bảng 11. a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó. b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng đơn vị).

Đề bài

Một thư viện thống kê số người đến đọc sách vào buổi tối trong 30 ngày của một tháng và kết quả được cho bởi Bảng 11.

Giải bài 8 trang 92 sách bài tập toán 12 - Cánh diều 1

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó (làm tròn kết quả đến hàng đơn vị).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 92 sách bài tập toán 12 - Cánh diều 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\).

+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Lời giải chi tiết

a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90 - 40 = 40\) (người).

b) Nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{30}}{4} = 7,5\).

Nhóm 2 có đầu mút trái \(s = 55\), độ dài \(h = 5\), tần số của nhóm \({n_2} = 5\) và nhóm 1 có tần số tích luỹ \(c{f_1} = 4\).

Ta có: \({Q_1} = s + \left( {\frac{{7,5 - c{f_1}}}{{{n_2}}}} \right).h = 55 + \left( {\frac{{7,5 - 4}}{5}} \right).5 = 58,5\).

Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\).

Nhóm 4 có đầu mút trái \(t = 65\), độ dài \(l = 5\), tần số của nhóm \({n_4} = 8\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 16\).

Ta có: \({Q_3} = t + \left( {\frac{{22,5 - c{f_3}}}{{{n_4}}}} \right).l = 65 + \left( {\frac{{22,5 - 16}}{8}} \right).5 = 69,0625\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 69,0625 - 58,5 \approx 11\) (người).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 92 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 92 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 8 trang 92 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.

Nội dung chi tiết bài 8 trang 92

Bài 8 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định khoảng đơn điệu của hàm số.
  • Dạng 2: Tìm cực đại, cực tiểu của hàm số.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến đạo hàm.

Giải chi tiết từng bài tập

Bài 8.1:

Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm khoảng đồng biến, nghịch biến của hàm số.

Hướng dẫn giải:

  1. Tính đạo hàm f'(x) = 3x2 - 6x.
  2. Giải phương trình f'(x) = 0 để tìm các điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  3. Lập bảng xét dấu f'(x) trên các khoảng (-∞; 0), (0; 2), (2; +∞).
  4. Kết luận khoảng đồng biến và nghịch biến của hàm số.

Kết quả: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Bài 8.2:

Tìm cực đại, cực tiểu của hàm số y = g(x) = x4 - 4x3 + 4x2 + 1.

Hướng dẫn giải:

  1. Tính đạo hàm g'(x) = 4x3 - 12x2 + 8x.
  2. Giải phương trình g'(x) = 0 để tìm các điểm cực trị: 4x3 - 12x2 + 8x = 0 => x = 0, x = 1, x = 2.
  3. Tính đạo hàm bậc hai g''(x) = 12x2 - 24x + 8.
  4. Xác định dấu của g''(x) tại các điểm cực trị để kết luận về cực đại, cực tiểu.

Kết quả: Hàm số đạt cực đại tại x = 1 với giá trị là 2, đạt cực tiểu tại x = 0 và x = 2 với giá trị là 1.

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các công thức tính đạo hàm của các hàm số cơ bản.
  • Sử dụng linh hoạt các phương pháp giải phương trình và bất phương trình.
  • Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Tại sao nên chọn giaitoan.edu.vn để học Toán 12?

Giaitoan.edu.vn cung cấp:

  • Lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Cánh Diều.
  • Đội ngũ giáo viên giàu kinh nghiệm, nhiệt tình hỗ trợ học sinh.
  • Giao diện thân thiện, dễ sử dụng.
  • Cập nhật kiến thức mới nhất, đáp ứng yêu cầu của chương trình học.

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 8 trang 92 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!

Tài liệu, đề thi và đáp án Toán 12