Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 84 trang 39 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 84 trang 39 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Kết luận nào sau đây là đúng đối với hàm số (y = {left( {frac{1}{2}} right)^{{x^2}}})? A. Hàm số đồng biến trên (mathbb{R}). B. Hàm số nghịch biến trên (mathbb{R}). C. Hàm số đồng biến trên khoảng (left( { - infty ;0} right)) và nghịch biến trên khoảng (left( {0; + infty } right)). D. Hàm số nghịch biến trên khoảng (left( { - infty ;0} right)) và đồng biến trên khoảng (left( {0; + infty } right)).
Đề bài
Kết luận nào sau đây là đúng đối với hàm số \(y = {\left( {\frac{1}{2}} \right)^{{x^2}}}\)?
A. Hàm số đồng biến trên \(\mathbb{R}\).
B. Hàm số nghịch biến trên \(\mathbb{R}\).
C. Hàm số đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).
D. Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
Phương pháp giải - Xem chi tiết
Các bước để tìm khoảng đồng biến, nghịch biến của hàm số \(f\left( x \right)\):
Bước 1. Tìm tập xác định của hàm số \(y = f\left( x \right)\).
Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\).
Ta có:
\(y' = ({x^2})'.{\left( {\frac{1}{2}} \right)^{{x^2}}}.\ln \frac{1}{2} = 2x.{\left( {\frac{1}{2}} \right)^{{x^2}}}.\ln \frac{1}{2} = 0 \Leftrightarrow x = 0\).
Bảng biến thiên của hàm số:
Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ;0} \right)\); nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).
Chọn C.
Bài 84 trang 39 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc đạo hàm cơ bản để tính đạo hàm của hàm số, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, và tìm cực trị của hàm số.
Bài 84 thường bao gồm các dạng bài tập sau:
Để giải bài 84 trang 39 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử chúng ta có hàm số f(x) = x3 - 3x2 + 2. Để tìm cực trị của hàm số này, chúng ta thực hiện các bước sau:
Vậy hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị là f(2) = -2.
Khi giải bài tập về đạo hàm, bạn cần chú ý các điểm sau:
Giaitoan.edu.vn hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn khi giải bài 84 trang 39 Sách bài tập Toán 12 - Cánh Diều và các bài tập tương tự. Chúc bạn học tập tốt!
Để củng cố kiến thức về đạo hàm, bạn có thể tham khảo thêm các bài tập sau: