Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 42 trang 77 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 42 trang 77 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\). a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng. b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành. c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\). d) Tính chu vi của tam giác \(ABC\). e) Tính \(\cos \widehat {BAC}\).
Đề bài
Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\).
a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng.
b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành.
c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\).
d) Tính chu vi của tam giác \(ABC\).
e) Tính \(\cos \widehat {BAC}\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
‒ Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = \left( {1;1;1} \right),\overrightarrow {AC} = \left( { - 1; - 4; - 1} \right),k\overrightarrow {AC} = \left( { - k; - 4k; - k} \right)\).
Suy ra \(\overrightarrow {AB} \ne k\overrightarrow {AC} ,\forall k \in \mathbb{R}\).
Vậy ba điểm \(A,B,C\) không thẳng hàng.
b) Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\).
\(\overrightarrow {DC} = \left( {0 - {x_D};\left( { - 4} \right) - {y_D};0 - {z_D}} \right) = \left( { - {x_D}; - 4 - {y_D}; - {z_D}} \right)\).
Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {AB} = \overrightarrow {DC} \).
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = - {x_D}\\1 = - 4 - {y_D}\\1 = - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 1\\{y_D} = - 5\\{z_D} = - 1\end{array} \right.\). Vậy \(D\left( { - 1; - 5; - 1} \right)\).
c) \(G\left( {\frac{{1 + 2 + 0}}{3};\frac{{0 + 1 + \left( { - 4} \right)}}{3};\frac{{1 + 2 + 0}}{3}} \right) \Leftrightarrow G\left( {1; - 1;1} \right)\).
d) Ta có:
\(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 ;\\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2}} = 3\sqrt 2 ;\\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( { - 4 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} = \sqrt {33} .\end{array}\)
Chu vi tam giác \(ABC\)là: \(\sqrt 3 + 3\sqrt 2 + \sqrt {33} \).
e) Trong tam giác \(ABC\), ta có:
\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.\left( { - 1} \right) + 1.\left( { - 4} \right) + 1.\left( { - 1} \right)}}{{\sqrt 3 .3\sqrt 2 }} = - \frac{{\sqrt 6 }}{3}\).
Bài 42 trang 77 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các hàm hợp. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Nội dung bài tập 42 trang 77 sách bài tập Toán 12 Cánh Diều thường bao gồm:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. (Lưu ý: Vì độ dài yêu cầu là 1000 từ, phần này sẽ được mở rộng với nhiều ví dụ và giải thích chi tiết hơn. Dưới đây là một ví dụ minh họa)
Ví dụ: Tính đạo hàm của hàm số y = x3 + 2x2 - 5x + 1
Giải:
Áp dụng quy tắc đạo hàm của hàm số lũy thừa, ta có:
y' = (x3)' + (2x2)' - (5x)' + (1)'
y' = 3x2 + 4x - 5 + 0
y' = 3x2 + 4x - 5
Vậy, đạo hàm của hàm số y = x3 + 2x2 - 5x + 1 là y' = 3x2 + 4x - 5.
Các dạng bài tập đạo hàm thường gặp:
Ứng dụng của đạo hàm trong thực tế:
Hy vọng rằng, với những hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, bạn sẽ tự tin hơn trong việc giải bài 42 trang 77 sách bài tập Toán 12 Cánh Diều và các bài tập đạo hàm khác. Chúc bạn học tập tốt!