Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 46 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán.
Mặt phẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với (Ox) có phương trình là: A. (x - {x_0} = 0). B. (y - {y_0} = 0). C. (z - {z_0} = 0). D. (x + y + z - {x_0} - {y_0} - {z_0} = 0).
Đề bài
Mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với \(Ox\) có phương trình là:
A. \(x - {x_0} = 0\).
B. \(y - {y_0} = 0\).
C. \(z - {z_0} = 0\).
D. \(x + y + z - {x_0} - {y_0} - {z_0} = 0\).
Phương pháp giải - Xem chi tiết
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
Lời giải chi tiết
Mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với \(Ox\) có vectơ pháp tuyến \(\overrightarrow n = \left( {1;0;0} \right)\).
Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với \(Ox\) là: \(x - {x_0} = 0\).
Chọn A.
Bài 5 trang 46 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các quy tắc đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài tập đạo hàm hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số y = x4 - 3x2 + 2.
Giải:
y' = 4x3 - 6x
Ví dụ 2: Tính đạo hàm của hàm số y = sin(3x).
Giải:
y' = 3cos(3x)
Khi tính đạo hàm, bạn cần chú ý đến các quy tắc đạo hàm của hàm hợp và các hàm số đặc biệt như hàm lượng giác, hàm mũ và logarit. Ngoài ra, việc kiểm tra lại kết quả là rất quan trọng để đảm bảo tính chính xác.
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 5 trang 46 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các quy tắc và phương pháp giải, bạn có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong các kỳ thi. Hãy luyện tập thường xuyên để nâng cao trình độ của mình!
Hàm số y | Đạo hàm y' |
---|---|
y = c (hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sin(x) | y' = cos(x) |
y = cos(x) | y' = -sin(x) |
y = ex | y' = ex |
y = ln(x) | y' = 1/x |