Logo Header
  1. Môn Toán
  2. Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều

Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều

Giải bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng theo dõi và tham khảo!

Giá trị nhỏ nhất (m), giá trị lớn nhất (M) của hàm số (y = xsqrt {4 - {x^2}} ) lần lượt bằng: A. (m = 0,M = 2). B. (m = - 2,M = 2). C. (m = - 2,M = 0). D. (m = 0,M = 4).

Đề bài

Giá trị nhỏ nhất \(m\), giá trị lớn nhất \(M\) của hàm số \(y = x\sqrt {4 - {x^2}} \) lần lượt bằng:

A. \(m = 0,M = 2\).

B. \(m = - 2,M = 2\). 

C. \(m = - 2,M = 0\). 

D. \(m = 0,M = 4\).

Phương pháp giải - Xem chi tiếtGiải bài 37 trang 18 sách bài tập toán 12 - Cánh diều 1

Tìm tập xác định của hàm số, sau đó tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn.

Lời giải chi tiết

Hàm số có tập xác định là \(\left[ { - 2;2} \right]\).

Ta có: \(y' = {\left( x \right)^\prime }.\sqrt {4 - {x^2}} + x.{\left( {\sqrt {4 - {x^2}} } \right)^\prime } = \sqrt {4 - {x^2}} + x.\frac{{ - {\rm{x}}}}{{\sqrt {4 - {x^2}} }} = \frac{{4 - 2{{\rm{x}}^2}}}{{\sqrt {4 - {x^2}} }}\)

Khi đó, trên đoạn \(\left[ { - 2;2} \right]\), \(y' = 0\) khi \(x = - \sqrt 2 \) hoặc \(x = \sqrt 2 \).

\(y\left( { - 2} \right) = 0;y\left( { - \sqrt 2 } \right) = - 2;y\left( {\sqrt 2 } \right) = 2;y\left( 2 \right) = 0\).

Vậy \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} y = - 2\) tại \(x = - \sqrt 2 \); \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} y = 2\) tại \(x = \sqrt 2 \).

Chọn B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 37

Bài 37 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình, hoặc để chứng minh một bất đẳng thức.
  • Khảo sát hàm số: Sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.

Lời giải chi tiết bài 37 trang 18

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: ...

(Giải thích chi tiết từng bước giải câu a, bao gồm cả việc áp dụng các công thức đạo hàm và các quy tắc liên quan)

Câu b: ...

(Giải thích chi tiết từng bước giải câu b, bao gồm cả việc áp dụng các công thức đạo hàm và các quy tắc liên quan)

Câu c: ...

(Giải thích chi tiết từng bước giải câu c, bao gồm cả việc áp dụng các công thức đạo hàm và các quy tắc liên quan)

Các lưu ý khi giải bài tập về đạo hàm

Khi giải các bài tập về đạo hàm, các em cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như xn, sinx, cosx, tanx, ex, ln(x),...
  • Hiểu rõ các quy tắc đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số, quy tắc đạo hàm của hàm hợp.
  • Sử dụng đúng các công thức và quy tắc: Áp dụng các công thức và quy tắc một cách chính xác để tránh sai sót.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Để giúp các em hiểu rõ hơn về cách giải bài tập về đạo hàm, chúng ta hãy xem xét một ví dụ minh họa sau:

(Đưa ra một ví dụ minh họa về bài tập đạo hàm và giải chi tiết)

Bài tập luyện tập

Để rèn luyện kỹ năng giải bài tập về đạo hàm, các em có thể tham khảo các bài tập sau:

  1. (Đưa ra một bài tập luyện tập)
  2. (Đưa ra một bài tập luyện tập)
  3. (Đưa ra một bài tập luyện tập)

Kết luận

Bài 37 trang 18 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ giải quyết bài tập này một cách hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12