Bài 47 trang 66 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng trong chương trình học. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 47 trang 66 sách bài tập Toán 12 Cánh Diều, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Phương trình của mặt cầu tâm (Ileft( { - 11; - 13;15} right)) bán kính 9 là: A. ({left( {x + 11} right)^2} + {left( {y + 13} right)^2} + {left( {z - 15} right)^2} = 9). B. ({left( {x + 11} right)^2} + {left( {y + 13} right)^2} + {left( {z - 15} right)^2} = 81). C. ({left( {x - 11} right)^2} + {left( {y - 13} right)^2} + {left( {z + 15} right)^2} = 9). D. ({left( {x - 11} right)^2} + {left( {y - 13} right)^2} + {left( {z + 15} right)^2} = 81).
Đề bài
Phương trình của mặt cầu tâm \(I\left( { - 11; - 13;15} \right)\) bán kính 9 là:
A. \({\left( {x + 11} \right)^2} + {\left( {y + 13} \right)^2} + {\left( {z - 15} \right)^2} = 9\).
B. \({\left( {x + 11} \right)^2} + {\left( {y + 13} \right)^2} + {\left( {z - 15} \right)^2} = 81\).
C. \({\left( {x - 11} \right)^2} + {\left( {y - 13} \right)^2} + {\left( {z + 15} \right)^2} = 9\).
D. \({\left( {x - 11} \right)^2} + {\left( {y - 13} \right)^2} + {\left( {z + 15} \right)^2} = 81\).
Phương pháp giải - Xem chi tiết
Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Phương trình của mặt cầu tâm \(I\left( { - 11; - 13;15} \right)\) bán kính 9 là:
\({\left( {x + 11} \right)^2} + {\left( {y + 13} \right)^2} + {\left( {z - 15} \right)^2} = {9^2}\) hay \({\left( {x + 11} \right)^2} + {\left( {y + 13} \right)^2} + {\left( {z - 15} \right)^2} = 81\).
Chọn B.
Bài 47 trang 66 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường tập trung vào việc tìm đạo hàm của các hàm số lượng giác, hàm hợp và ứng dụng đạo hàm để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
Bài 47 thường bao gồm các dạng bài tập sau:
Để giải bài 47 trang 66 sách bài tập Toán 12 Cánh Diều hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét từng câu hỏi cụ thể trong bài tập. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Áp dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 47 trang 66 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các kiến thức và phương pháp giải, học sinh có thể tự tin giải quyết các bài tập tương tự và ứng dụng đạo hàm vào các lĩnh vực khác nhau.