Chào mừng các em học sinh đến với lời giải chi tiết bài 67 trang 69 sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các tài liệu học tập chất lượng và giải pháp tối ưu nhất.
Cho bốn điểm \(A\left( {0;1;1} \right),B\left( { - 1;0;3} \right),C\left( {0;0;2} \right)\) và \(D\left( {1;1; - 2} \right)\). a) Tìm toạ độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\). b) Lập phương trình tham số của các đường thẳng \(AB\) và \(AC\). c) Lập phương trình tổng quát của mặt phẳng \(\left( {ABC} \right)\). d) Chứng minh rằng bốn điểm \(A,B,C,D\) không đồng phẳng. e) Tính khoảng cách từ điểm \(D\
Đề bài
Cho bốn điểm \(A\left( {0;1;1} \right),B\left( { - 1;0;3} \right),C\left( {0;0;2} \right)\) và \(D\left( {1;1; - 2} \right)\).
a) Tìm toạ độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).
b) Lập phương trình tham số của các đường thẳng \(AB\) và \(AC\).
c) Lập phương trình tổng quát của mặt phẳng \(\left( {ABC} \right)\).
d) Chứng minh rằng bốn điểm \(A,B,C,D\) không đồng phẳng.
e) Tính khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ABC} \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).
‒ Sử dụng công thức tính tích có hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\).
‒ Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
‒ Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
‒ Để chứng minh rằng bốn điểm \(A,B,C,D\) không đồng phẳng, ta chứng minh điểm \(D\) không nằm trên mặt phẳng \(\left( {ABC} \right)\).
‒ Khoảng cách từ điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\):
\(d\left( {{M_0};\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{{\rm{z}}_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Lời giải chi tiết
a) \(\overrightarrow {AB} = \left( { - 1 - 0;0 - 1;3 - 1} \right) = \left( { - 1; - 1;2} \right),\overrightarrow {AC} = \left( {0 - 0;0 - 1;2 - 1} \right) = \left( {0; - 1;1} \right)\)
\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1.1 - 2.\left( { - 1} \right);2.0 - \left( { - 1} \right).1;\left( { - 1} \right).\left( { - 1} \right) - 0.\left( { - 1} \right)} \right) = \left( {1;1;1} \right)\).
b) Đường thẳng \(AB\) đi qua điểm \(A\left( {0;1;1} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 1; - 1;2} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = - t\\y = 1 - t\\z = 1 + 2t\end{array} \right.\).
Đường thẳng \(AC\) đi qua điểm \(A\left( {0;1;1} \right)\) và nhận \(\overrightarrow {AC} = \left( {0; - 1;1} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 0\\y = 1 - t\\z = 1 + t\end{array} \right.\).
c) Phương trình mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(A\left( {0;1;1} \right)\) và nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;1;1} \right)\) làm vectơ pháp tuyến là:
\(1\left( {x - 0} \right) + 1\left( {y - 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow x + y + z - 2 = 0\).
d) Ta có: \(1 + 1 + \left( { - 2} \right) - 2 = - 2 \ne 0\) nên điểm \(D\) không nằm trên mặt phẳng \(\left( {ABC} \right)\).
Vậy bốn điểm \(A,B,C,D\) không đồng phẳng.
e) Khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ABC} \right)\) bằng:
\(d\left( {D;\left( {ABC} \right)} \right) = \frac{{\left| {1 + 1 + \left( { - 2} \right) - 2} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{2\sqrt 3 }}{3}\).
Bài 67 trang 69 sách bài tập Toán 12 Cánh Diều thuộc chương trình học môn Toán lớp 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường bao gồm các dạng bài tập khác nhau, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức đã được trang bị để giải quyết.
Để giúp các em hiểu rõ hơn về nội dung bài tập, chúng ta sẽ cùng nhau phân tích từng câu hỏi và tìm ra phương pháp giải quyết hiệu quả nhất.
(Giải chi tiết câu 1, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng)
(Giải chi tiết câu 2, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng)
(Giải chi tiết câu 3, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng)
Để giải quyết các bài tập trong sách bài tập Toán 12 Cánh Diều một cách hiệu quả, các em cần chú ý những điều sau:
(Cung cấp một ví dụ minh họa cụ thể về cách giải một dạng bài tập tương tự trong bài 67, trang 69)
Trong quá trình giải bài tập, các em cần chú ý đến các đơn vị đo lường, các dấu hiệu đặc biệt, và các trường hợp ngoại lệ. Ngoài ra, các em cũng nên sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
Bài 67 trang 69 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp các em củng cố kiến thức và rèn luyện kỹ năng giải bài. Hy vọng rằng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự trong sách bài tập Toán 12 Cánh Diều hoặc trên các trang web học toán online khác.
Công thức | Mô tả |
---|---|
(Công thức 1 - giả định) | (Mô tả công thức 1) |
(Công thức 2 - giả định) | (Mô tả công thức 2) |