Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 16 trang 48 một cách đầy đủ và chính xác, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.
Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\). a) Chứng minh rằng \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
Đề bài
Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\).
a) Chứng minh rằng \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\).
b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
Phương pháp giải - Xem chi tiết
‒ Cho mặt phẳng \(\left( {{P_1}} \right):{A_1}x + {B_1}y + {C_1}z + {D_1} = 0\) và \(\left( {{P_2}} \right):{A_2}x + {B_2}y + {C_2}z + {D_2} = 0\). Gọi \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\) lần lượt là vectơ pháp tuyến của hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\). Khi đó \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\) khi và chỉ khi tồn tại số thực \(k \ne 0\) sao cho \(\left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{D_2}\end{array} \right.\).
‒ Để tính khoảng cách giữa hai mặt phẳng song song ta đưa về tính khoảng cách từ một điểm trên mặt phẳng này đến mặt phẳng còn lại.
Lời giải chi tiết
a) Ta có \(\overrightarrow {{n_1}} = \left( {1;2; - 3} \right),\overrightarrow {{n_2}} = \left( { - 4; - 8;12} \right)\) lần lượt là vectơ pháp tuyến của các mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\). Vì \(\overrightarrow {{n_2}} = - 4\overrightarrow {{n_1}} \) và \(3 \ne - 4.5\) nên \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\).
b) Chọn điểm \(M\left( { - 5;0;0} \right) \in \left( {{P_1}} \right)\). Khi đó ta có:
\(d\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = d\left( {M,\left( {{P_2}} \right)} \right) = \frac{{\left| { - 4.\left( { - 5} \right) - 8.0 + 12.0 + 3} \right|}}{{\sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 8} \right)}^2} + {{12}^2}} }} = \frac{{23\sqrt {14} }}{{56}}\).
Bài 16 trang 48 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài của bài 16 trang 48 sách bài tập Toán 12 Cánh Diều:
(Giả sử đề bài là: Tính đạo hàm của các hàm số sau: a) y = x^3 - 2x^2 + 5x - 1; b) y = (x^2 + 1)/(x - 2); c) y = sin(2x + 1))
Để tính đạo hàm của hàm số y = x^3 - 2x^2 + 5x - 1, ta sử dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:
Vậy, y' = 3x^2 - 4x + 5
Để tính đạo hàm của hàm số y = (x^2 + 1)/(x - 2), ta sử dụng quy tắc đạo hàm của thương:
y' = [(x^2 + 1)'(x - 2) - (x^2 + 1)(x - 2)'] / (x - 2)^2
Tính các đạo hàm thành phần:
Thay vào công thức đạo hàm của thương:
y' = [2x(x - 2) - (x^2 + 1)] / (x - 2)^2 = (2x^2 - 4x - x^2 - 1) / (x - 2)^2 = (x^2 - 4x - 1) / (x - 2)^2
Để tính đạo hàm của hàm số y = sin(2x + 1), ta sử dụng quy tắc đạo hàm của hàm hợp:
y' = cos(2x + 1) * (2x + 1)' = cos(2x + 1) * 2 = 2cos(2x + 1)
Qua việc giải chi tiết bài 16 trang 48 sách bài tập Toán 12 Cánh Diều, chúng ta đã củng cố kiến thức về các quy tắc đạo hàm cơ bản. Để học tốt môn Toán 12, bạn cần:
Giaitoan.edu.vn hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 16 trang 48 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt!