Logo Header
  1. Môn Toán
  2. Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều

Giải bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: a) (y = frac{{2{rm{x}} - 1}}{{x + 1}}); b) (y = frac{x}{{x - 2}}); c) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{ - x + 1}}); d) (y = frac{{{x^2} + 2{rm{x}} - 3}}{{x + 2}}).

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:

a) \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\);

b) \(y = \frac{x}{{x - 2}}\);

c) \(y = \frac{{{x^2} - 2{\rm{x}} + 2}}{{ - x + 1}}\);

d) \(y = \frac{{{x^2} + 2{\rm{x}} - 3}}{{x + 2}}\).

Phương pháp giải - Xem chi tiếtGiải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 1

Sơ đồ khảo sát hàm số:

Bước 1. Tìm tập xác định của hàm số. 

Bước 2. Xét sự biến thiên của hàm số 

• Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm các đường tiệm cận của đồ thị (nếu có). 

• Lập bảng biến thiên của hàm số, bao gồm: tính đạo hàm của hàm số, xét dấu đạo hàm, xét chiều biến thiên và tìm cực trị của hàm số (nếu có), điền các kết quả vào bảng. 

Bước 3. Vẽ đồ thị hàm số 

• Vẽ các đường tiệm cận (nếu có).

• Xác định các điểm đặc biệt của đồ thị: cực trị, giao điểm của đồ thị với các trục toạ độ (trong trường hợp đơn giản),… 

• Nhận xét về đặc điểm của đồ thị: chỉ ra tâm đối xứng, trục đối xứng (nếu có).

Lời giải chi tiết

a) 1) Tập xác định: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

2) Sự biến thiên:

• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

\(\mathop {\lim }\limits_{x \to + \infty } y = 2;\mathop {\lim }\limits_{x \to - \infty } y = 2\).

Do đó, đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {1^ - }} y = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} y = - \infty \).

Do đó, đường thẳng \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

• Bảng biến thiên:

\(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 2

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

3) Đồ thị

• Giao điểm của đồ thị với trục tung: \(\left( {0; - 1} \right)\).

• Đồ thị hàm số đi qua các điểm: \(\left( { - 4;2} \right),\left( { - 2;5} \right),\left( {0; - 1} \right),\left( {2;1} \right)\).

Vậy đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) như hình vẽ bên:

• Đồ thị hàm số nhận giao điểm \(I\left( { - 1;2} \right)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 3

b) 1) Tập xác định: \(\mathbb{R}\backslash \left\{ 2 \right\}\).

2) Sự biến thiên:

• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

\(\mathop {\lim }\limits_{x \to + \infty } y = 1;\mathop {\lim }\limits_{x \to - \infty } y = 1\).

Do đó, đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty \).

Do đó, đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

• Bảng biến thiên:

\(y' = \frac{{ - 2}}{{{{\left( {x - 2} \right)}^2}}} < 0,\forall x \in \mathbb{R}\backslash \left\{ 2 \right\}\).

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 4

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).

3) Đồ thị

• Giao điểm của đồ thị với trục tung: \(O\left( {0;0} \right)\).

• Đồ thị hàm số đi qua các điểm: \(\left( {0;0} \right),\left( {1; - 1} \right),\left( {3;3} \right),\left( {4;2} \right)\).

Vậy đồ thị hàm số \(y = \frac{x}{{x - 2}}\) như hình vẽ bên:

• Đồ thị hàm số nhận giao điểm \(I\left( { - 1;2} \right)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 5

c) \(y = \frac{{{x^2} - 2{\rm{x}} + 2}}{{ - x + 1}} \Leftrightarrow y = - x + 1 + \frac{1}{{ - x + 1}}\)

1) Tập xác định: \(\mathbb{R}\backslash \left\{ 1 \right\}\).

2) Sự biến thiên:

• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

\(\mathop {\lim }\limits_{x \to + \infty } y = - \infty ;\mathop {\lim }\limits_{x \to - \infty } y = + \infty \).

\(\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \).

Do đó, đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{ - x + 1}} = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{ - x + 1}} = 0\)

Do đó, đường thẳng \(y = - x + 1\) là tiệm cận xiên của đồ thị hàm số.

• Bảng biến thiên:

\(\begin{array}{l}y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 2} \right)}^\prime }\left( { - x + 1} \right) - \left( {{x^2} - 2{\rm{x}} + 2} \right){{\left( { - x + 1} \right)}^\prime }}}{{{{\left( { - x + 1} \right)}^2}}}\\ & = \frac{{\left( {2{\rm{x}} - 2} \right)\left( { - x + 1} \right) - \left( {{x^2} - 2{\rm{x}} + 2} \right)\left( { - 1} \right)}}{{{{\left( { - x + 1} \right)}^2}}} = \frac{{ - {x^2} + 2{\rm{x}}}}{{{{\left( { - x + 1} \right)}^2}}}\end{array}\)

\(y' = 0 \Leftrightarrow - {x^2} + 2{\rm{x}} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 2\).

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 6

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\); đồng biến trên các khoảng \(\left( {0;1} \right)\) và \(\left( {1;2} \right)\).

Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 2\); đạt cực đại tại \(x = 2,{y_{CĐ}} = -2\).

3) Đồ thị

• Giao điểm của đồ thị với trục tung: \(\left( {0;2} \right)\).

• Đồ thị hàm số đi qua các điểm: \(\left( { - 1;\frac{5}{2}} \right),\left( {0;2} \right),\left( {2; - 2} \right),\left( {3; - \frac{5}{2}} \right)\).

Vậy đồ thị hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 2}}{{ - x + 1}}\) như hình vẽ bên:

• Đồ thị hàm số nhận giao điểm \(I\left( {1;0} \right)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 7

d) \(y = \frac{{{x^2} + 2{\rm{x}} - 3}}{{x + 2}} \Leftrightarrow y = x - \frac{3}{{x + 2}}\)

1) Tập xác định: \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

2) Sự biến thiên:

• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \).

\(\mathop {\lim }\limits_{x \to - {2^ - }} y = + \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} y = - \infty \).

Do đó, đường thẳng \(x = - 2\) là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3}}{{x + 2}} = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - x} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3}}{{x + 2}} = 0\)

Do đó, đường thẳng \(y = x\) là tiệm cận xiên của đồ thị hàm số.

• Bảng biến thiên:

\(y' = 1 + \frac{3}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\}\)

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 8

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

3) Đồ thị

• Giao điểm của đồ thị với trục tung: \(\left( { - \frac{3}{2};0} \right)\).

• Đồ thị hàm số đi qua các điểm: \(\left( { - 5; - 4} \right),\left( { - 3;0} \right),\left( { - 1; - 4} \right),\left( {0; - \frac{3}{2}} \right),\left( {1;0} \right)\).

Vậy đồ thị hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - 3}}{{x + 2}}\) như sau:

Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều 9

• Đồ thị hàm số nhận giao điểm \(I\left( {1;0} \right)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số, các quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều

Bài 81 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc chuỗi để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Hướng dẫn giải chi tiết bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều

Để giải bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các điều kiện ràng buộc.
  2. Xác định kiến thức cần sử dụng: Xác định các khái niệm, định lý, công thức liên quan đến bài toán.
  3. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.
  4. Thực hiện giải bài: Thực hiện các bước giải theo kế hoạch đã lập.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải nhanh bài 81 trang 38 Sách bài tập Toán 12 - Cánh Diều

Để giải nhanh bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các quy tắc tính đạo hàm: Việc nắm vững các quy tắc tính đạo hàm sẽ giúp bạn tính đạo hàm một cách nhanh chóng và chính xác.
  • Sử dụng bảng đạo hàm: Sử dụng bảng đạo hàm để tra cứu đạo hàm của các hàm số cơ bản.
  • Phân tích bài toán: Phân tích bài toán để xác định các bước giải cần thiết.
  • Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn nâng cao kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12 và giải bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Bài 81 trang 38 sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên đây, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12