Logo Header
  1. Môn Toán
  2. Giải bài 31 trang 76 sách bài tập toán 12 - Cánh diều

Giải bài 31 trang 76 sách bài tập toán 12 - Cánh diều

Giải bài 31 trang 76 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 31 trang 76 sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 12 nhé!

Cho hai vectơ (overrightarrow u = left( {2; - 2;1} right),overrightarrow v = left( {5; - 4; - 1} right)). Toạ độ của vectơ (overrightarrow u - overrightarrow v ) là: A. (left( { - 3;2;2} right)). B. (left( {7; - 6;0} right)). C. (left( {3; - 2; - 2} right)). D. (left( { - 3; - 6;0} right)).

Đề bài

Cho hai vectơ \(\overrightarrow u = \left( {2; - 2;1} \right),\overrightarrow v = \left( {5; - 4; - 1} \right)\). Toạ độ của vectơ \(\overrightarrow u - \overrightarrow v \) là:

A. \(\left( { - 3;2;2} \right)\)

B. \(\left( {7; - 6;0} \right)\)

C. \(\left( {3; - 2; - 2} \right)\)

D. \(\left( { - 3; - 6;0} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 31 trang 76 sách bài tập toán 12 - Cánh diều 1

Sử dụng biểu thức toạ độ của phép trừ vectơ:

Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u - \overrightarrow v = \left( {{x_1} - {x_2};{y_1} - {y_2};{z_1} - {z_2}} \right)\).

Lời giải chi tiết

\(\overrightarrow u - \overrightarrow v = \left( {2 - 5; - 2 - \left( { - 4} \right);1 - \left( { - 1} \right)} \right) = \left( { - 3;2;2} \right)\).

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 31 trang 76 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 31 trang 76 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 31 trang 76 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.

Nội dung bài tập

Bài 31 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định khoảng đơn điệu của hàm số.
  • Dạng 2: Tìm cực đại, cực tiểu của hàm số.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến tối ưu hóa.

Phương pháp giải

Để giải quyết bài 31 trang 76 sách bài tập Toán 12 Cánh Diều, các em cần nắm vững các bước sau:

  1. Bước 1: Tính đạo hàm f'(x) của hàm số f(x).
  2. Bước 2: Tìm các điểm tới hạn của hàm số (các điểm mà f'(x) = 0 hoặc f'(x) không xác định).
  3. Bước 3: Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Bước 4: Xác định cực đại, cực tiểu của hàm số dựa vào bảng xét dấu f'(x).
  5. Bước 5: Giải các bài toán ứng dụng bằng cách sử dụng các kiến thức về đạo hàm và cực trị.

Ví dụ minh họa

Ví dụ: Xét hàm số f(x) = x3 - 3x2 + 2. Hãy tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.

Giải:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm điểm tới hạn: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu f'(x):
  4. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  5. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra điều kiện xác định của hàm số trước khi tính đạo hàm.
  • Sử dụng đúng các công thức đạo hàm cơ bản.
  • Lập bảng xét dấu đạo hàm một cách cẩn thận để tránh sai sót.
  • Kết hợp các kiến thức về đạo hàm với các kiến thức khác trong chương trình Toán 12 để giải quyết các bài toán phức tạp.

Tài liệu tham khảo

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tập và luyện tập:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán online uy tín
  • Các video bài giảng về đạo hàm

Lời kết

Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các em học sinh sẽ tự tin hơn khi giải bài 31 trang 76 sách bài tập Toán 12 Cánh Diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12