Logo Header
  1. Môn Toán
  2. Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diều

Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diều

Giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Lập phương trình của mặt cầu (left( S right)) trong mỗi trường hợp sau: a) (left( S right)) có tâm (Ileft( { - 2;3;8} right)) bán kính (R = 100); b) (left( S right)) có tâm (Ileft( {3; - 4;0} right)) và đi qua điểm (Mleft( {2; - 3;1} right)); c) (left( S right)) có đường kính là (AB) với (Aleft( { - 1;0;4} right)) và (Bleft( {1;0;2} right)).

Đề bài

Lập phương trình của mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau:

a) \(\left( S \right)\) có tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\);

b) \(\left( S \right)\) có tâm \(I\left( {3; - 4;0} \right)\) và đi qua điểm \(M\left( {2; - 3;1} \right)\);

c) \(\left( S \right)\) có đường kính là \(AB\) với \(A\left( { - 1;0;4} \right)\) và \(B\left( {1;0;2} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 69 trang 70 sách bài tập toán 12 - Cánh diều 1

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

a) Phương trình của mặt cầu tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\) là:

\({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = {100^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = 10000\).

b) Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 3 - \left( { - 4} \right)} \right)}^2} + {{\left( {1 - 0} \right)}^2}} = \sqrt 3 \).

Vậy phương trình mặt cầu đó là:

\({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = {\left( {\sqrt 3 } \right)^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = 3\).

c) Mặt cầu đường kính \(AB\) có tâm \(I\left( {0;0;3} \right)\) là trung điểm của \(AB\).

Bán kính của mặt cầu đó bằng:

\(R = IA = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {4 - 3} \right)}^2}} = \sqrt 2 \).

Vậy phương trình mặt cầu đó là:

\({x^2} + {y^2} + {\left( {z - 3} \right)^2} = {\left( {\sqrt 2 } \right)^2}\) hay \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều: Phân tích chi tiết và hướng dẫn giải

Bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 69 trang 70 Sách bài tập Toán 12 - Cánh Diều

Bài tập 69 thường bao gồm các dạng bài sau:

  • Dạng 1: Tìm đạo hàm của hàm số và xác định các điểm cực trị.
  • Dạng 2: Khảo sát sự biến thiên của hàm số bằng cách sử dụng đạo hàm.
  • Dạng 3: Giải các bài toán tối ưu hóa bằng phương pháp đạo hàm.

Hướng dẫn giải chi tiết bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều

Để giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm cấp nhất bằng 0.
  4. Bước 4: Xác định khoảng đơn điệu của hàm số dựa vào dấu của đạo hàm cấp nhất.
  5. Bước 5: Tính đạo hàm cấp hai của hàm số.
  6. Bước 6: Xác định điểm uốn của hàm số bằng cách giải phương trình đạo hàm cấp hai bằng 0.
  7. Bước 7: Vẽ đồ thị hàm số dựa trên các thông tin đã thu thập được.

Ví dụ minh họa giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều

Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

1. Tính đạo hàm cấp nhất: y' = 3x2 - 6x

2. Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2

3. Tính đạo hàm cấp hai: y'' = 6x - 6

4. Kiểm tra dấu của đạo hàm cấp hai tại các điểm cực trị:

  • Tại x = 0: y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 2.
  • Tại x = 2: y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y = -2.

Vậy, hàm số đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).

Lưu ý khi giải bài tập về đạo hàm

Khi giải các bài tập về đạo hàm, bạn cần lưu ý những điều sau:

  • Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản.
  • Sử dụng đúng các công thức đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán thực tế.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12 và giải các bài tập về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 12 trên YouTube

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12