Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Lập phương trình của mặt cầu (left( S right)) trong mỗi trường hợp sau: a) (left( S right)) có tâm (Ileft( { - 2;3;8} right)) bán kính (R = 100); b) (left( S right)) có tâm (Ileft( {3; - 4;0} right)) và đi qua điểm (Mleft( {2; - 3;1} right)); c) (left( S right)) có đường kính là (AB) với (Aleft( { - 1;0;4} right)) và (Bleft( {1;0;2} right)).
Đề bài
Lập phương trình của mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau:
a) \(\left( S \right)\) có tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\);
b) \(\left( S \right)\) có tâm \(I\left( {3; - 4;0} \right)\) và đi qua điểm \(M\left( {2; - 3;1} \right)\);
c) \(\left( S \right)\) có đường kính là \(AB\) với \(A\left( { - 1;0;4} \right)\) và \(B\left( {1;0;2} \right)\).
Phương pháp giải - Xem chi tiết
‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.
‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
a) Phương trình của mặt cầu tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\) là:
\({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = {100^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = 10000\).
b) Bán kính của mặt cầu đó bằng:
\(R = IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 3 - \left( { - 4} \right)} \right)}^2} + {{\left( {1 - 0} \right)}^2}} = \sqrt 3 \).
Vậy phương trình mặt cầu đó là:
\({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = {\left( {\sqrt 3 } \right)^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = 3\).
c) Mặt cầu đường kính \(AB\) có tâm \(I\left( {0;0;3} \right)\) là trung điểm của \(AB\).
Bán kính của mặt cầu đó bằng:
\(R = IA = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {4 - 3} \right)}^2}} = \sqrt 2 \).
Vậy phương trình mặt cầu đó là:
\({x^2} + {y^2} + {\left( {z - 3} \right)^2} = {\left( {\sqrt 2 } \right)^2}\) hay \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\).
Bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 69 thường bao gồm các dạng bài sau:
Để giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Giải:
1. Tính đạo hàm cấp nhất: y' = 3x2 - 6x
2. Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
3. Tính đạo hàm cấp hai: y'' = 6x - 6
4. Kiểm tra dấu của đạo hàm cấp hai tại các điểm cực trị:
Vậy, hàm số đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).
Khi giải các bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Để học tốt môn Toán 12 và giải các bài tập về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 69 trang 70 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tốt!