Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 99 trang 42 một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và tiện lợi nhất cho học sinh. Hãy cùng bắt đầu với bài giải chi tiết ngay sau đây!
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Cho hàm số \(y = x.{e^x}\). a) \(y' = {e^x} + x.{e^x}\).b) \(y' = 0\) khi \(x = - 1,x = 0\).c) \(y' > 0\) khi \(x \in \left( { - 1; + \infty } \right)\) và \(y' < 0\) khi \(x \in \left( { - \infty ; - 1} \right)\).d) Hàm số đạt cực đại tại \(x = - 1\).
Phương pháp giải - Xem chi tiết
‒ Dựa vào hình dáng của đồ thị hàm số.
‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.
‒ Xét các điểm cực trị của hàm số.
Lời giải chi tiết
• Căn cứ hình dáng của đồ thị hàm số, ta có: \(a > 0\). Vậy a) đúng.
• Đồ thị cắt trục tung tại điểm \(\left( {0;d} \right)\) nằm phía trên trục hoành nên điểm đó có tung độ dương. Vậy b) đúng.
• Đồ thị hàm số có hai điểm cực trị nằm ở hai phía trục tung. Vậy c) sai.
• Trung điểm của đoạn nối hai điểm cực trị \({x_1},{x_2}\) nằm bên phải trục tung nên \({x_1} + {x_2} = - \frac{{2b}}{{3{\rm{a}}}} > 0 \Leftrightarrow \frac{{2b}}{{3{\rm{a}}}} < 0\). Do \(a > 0\) nên \(b < 0\). Vậy d) đúng.
a) Đ.
b) S.
c) Đ.
d) S.
Bài 99 trang 42 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Ứng dụng đạo hàm để khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số. Việc nắm vững các khái niệm và kỹ năng này là vô cùng quan trọng để giải quyết các bài toán liên quan đến hàm số trong chương trình Toán 12.
Bài 99 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 99 trang 42, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng)
Để minh họa cho phương pháp giải bài 99, chúng ta hãy xem xét một ví dụ cụ thể:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và vẽ đồ thị.
Để giải quyết các bài tập về khảo sát hàm số một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để nâng cao kiến thức về khảo sát hàm số, bạn có thể tham khảo các tài liệu sau:
Bài 99 trang 42 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng khảo sát hàm số. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.