Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 54 trang 67 Sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Tại một thời điểm có bão, khi đặt hệ trục toạ độ (Oxyz) (đơn vị trên mỗi trục là kilômét) ở một vị trí phù hợp thì tâm bão có toạ độ (left( {300;200;1} right)) (Hình 6). a) Lập phương trình mặt cầu để mô tả ranh giới bên ngoài vùng ảnh hưởng của bão ở cấp độ: bán kính gió mạnh từ cấp 10, giật từ cấp 12 trở lên khoảng 100 km tính từ tâm bão. b) Tại một vị trí có toạ độ (left( {350;245;1} right)) thì có bị ảnh hưởng bởi cơn bão được mô tả ở câu a hay không?
Đề bài
Tại một thời điểm có bão, khi đặt hệ trục toạ độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét) ở một vị trí phù hợp thì tâm bão có toạ độ \(\left( {300;200;1} \right)\) (Hình 6).
a) Lập phương trình mặt cầu để mô tả ranh giới bên ngoài vùng ảnh hưởng của bão ở cấp độ: bán kính gió mạnh từ cấp 10, giật từ cấp 12 trở lên khoảng 100 km tính từ tâm bão.
b) Tại một vị trí có toạ độ \(\left( {350;245;1} \right)\) thì có bị ảnh hưởng bởi cơn bão được mô tả ở câu a hay không?
Phương pháp giải - Xem chi tiết
‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
‒ Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).
+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.
+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.
+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.
Lời giải chi tiết
a) Phương trình của mặt cầu tâm \(I\left( {300;200;1} \right)\) bán kính 100 là:
\({\left( {x - 300} \right)^2} + {\left( {y - 200} \right)^2} + {\left( {z - 1} \right)^2} = {100^2}\) hay \({\left( {x - 300} \right)^2} + {\left( {y - 200} \right)^2} + {\left( {z - 1} \right)^2} = 10000\).
b) Khoảng cách từ vị trí có toạ độ \(\left( {350;245;1} \right)\) đến tâm bão là:
\(d = \sqrt {{{\left( {350 - 300} \right)}^2} + {{\left( {245 - 200} \right)}^2} + {{\left( {1 - 1} \right)}^2}} = 5\sqrt {181} < 100\)
Vậy tại vị trí có toạ độ \(\left( {350;245;1} \right)\) bị ảnh hưởng bởi cơn bão.
Bài 54 trang 67 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức lý thuyết và kỹ năng tính toán là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.
Bài 54 thường bao gồm các dạng bài tập sau:
Để giải bài 54 trang 67 Sách bài tập Toán 12 Cánh Diều, chúng ta cần thực hiện các bước sau:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số y = sin(2x + 1). Ta thực hiện như sau:
Sử dụng quy tắc đạo hàm của hàm hợp: y' = cos(2x + 1) * (2x + 1)' = cos(2x + 1) * 2 = 2cos(2x + 1)
Để giải bài tập về đạo hàm hiệu quả, bạn có thể tham khảo một số mẹo sau:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 54 trang 67 Sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.