Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 17 trang 67 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất cho các bài toán Toán 12, đồng thời giúp bạn hiểu sâu sắc về lý thuyết và ứng dụng của từng bài học.
Trong quá trình cất cánh của một máy bay không người lái: Ban đầu máy bay ở vị trí \(A\), máy bay cách vị trí điều khiển 300 m về phía nam và 200 m về phía đông, đồng thời cách mặt đất 100 m (Hình 16). Một phút sau, máy bay ở vị trí \(B\) cách vị trí điều khiển 1 200 m về phía nam và 2 100 m về phía đông, đồng thời cách mặt đất 250 m. Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) trùng với vị trí điều khiển, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) có hướng trùng với hướn
Đề bài
Trong quá trình cất cánh của một máy bay không người lái: Ban đầu máy bay ở vị trí \(A\), máy bay cách vị trí điều khiển 300 m về phía nam và 200 m về phía đông, đồng thời cách mặt đất 100 m (Hình 16). Một phút sau, máy bay ở vị trí \(B\) cách vị trí điều khiển 1 200 m về phía nam và 2 100 m về phía đông, đồng thời cách mặt đất 250 m.
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) trùng với vị trí điều khiển, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) có hướng trùng với hướng nam, trục \(Oy\) có hướng trùng với hướng đông, trục \(Oz\) vuông góc với mặt đất hướng lên bầu trời, mỗi đơn vị trên trục tương ứng với 1 m. Hãy xác định toạ độ vectơ dịch chuyển \(\overrightarrow {AB} \) của máy bay không người lái đó.
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).
Lời giải chi tiết
Từ giả thiết ta có toạ độ của điểm \(A\left( {300;200;100} \right)\), toạ độ của điểm \(B\left( {1200;2100;250} \right)\).
Do đó, ta có: \(\overrightarrow {AB} = \left( {1200 - 300;2100 - 200;250 - 100} \right) = \left( {900;1900;150} \right)\).
Bài 17 trang 67 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 17 trang 67 thường bao gồm các dạng bài tập sau:
Để giải bài 17 trang 67 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.
Giải:
Khi giải bài 17 trang 67 Sách bài tập Toán 12 - Cánh Diều, bạn cần lưu ý:
Để học Toán 12 hiệu quả, bạn có thể tham khảo các tài liệu sau:
Bài 17 trang 67 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.