Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 37 trang 21 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng theo dõi và tham khảo!
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho (fleft( x right)) là hàm số có đạo hàm cấp hai liên tục trên đoạn (left[ {a;b} right]). a) (intlimits_{a}^{b}{f''left( x right)dx}=f'left( b right)-f'left( a right)). b) (intlimits_{a}^{b}{f''left( x right)dx}=fleft( b right)-fleft( a right)). c) (intlimits_{a}^{b}{f''left( x right)dx}=f'left( a right)-f'left( b right)). d) (intlimits_{a}^{b}{f''left( x right)dx}=fleft( a righ
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho \(f\left( x \right)\) là hàm số có đạo hàm cấp hai liên tục trên đoạn \(\left[ {a;b} \right]\).
a) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f'\left( b \right)-f'\left( a \right)\).
b) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f\left( b \right)-f\left( a \right)\).
c) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f'\left( a \right)-f'\left( b \right)\).
d) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f\left( a \right)-f\left( b \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng khái niệm nguyên hàm: Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nếu \(F'\left( x \right) = f\left( x \right)\) với mọi \(x\) thuộc \(K\).
Lời giải chi tiết
\(\int\limits_{a}^{b}{f''\left( x \right)dx}=\int\limits_{a}^{b}{{{\left[ f'\left( x \right) \right]}^{\prime }}dx}=\left. f'\left( x \right) \right|_{a}^{b}=f'\left( b \right)-f'\left( a \right)\). Vậy a) đúng, b) sai, c) sai, d) sai.
a) Đ.
b) S.
c) S.
d) S.
Bài 37 trang 21 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 37 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 37 trang 21 Sách bài tập Toán 12 - Cánh Diều, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).
Lời giải:
f'(x) = 3x2 - 6x
Tìm đạo hàm cấp hai của hàm số g(x) = sin(2x).
Lời giải:
g'(x) = 2cos(2x)
g''(x) = -4sin(2x)
Khi giải các bài tập về đạo hàm, các em cần lưu ý những điều sau:
Ngoài Sách bài tập Toán 12 - Cánh Diều, các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 37 trang 21 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ giải quyết bài tập này một cách hiệu quả và đạt kết quả tốt trong môn Toán.