Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều

Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều

Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 91 sách bài tập Toán 12 - Cánh diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9. a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: (R = 90) (tuổi). b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng (frac{n}{4} = frac{{200}}{4} = 50). c) ({Q_3} = 52frac{{17}}{{24}}). d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20. A. 120. B. 80. C. 20. D. 200.

Đề bài

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9.

Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều 1

a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90\) (tuổi).

b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\).

c) \({Q_3} = 52\frac{{17}}{{24}}\).

d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20.

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 91 sách bài tập toán 12 - Cánh diều 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\).

+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Lời giải chi tiết

Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90 - 10 = 80\). Vậy a) sai.

Ta có bảng sau:

Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều 3

Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\). Vậy b) đúng.

Nhóm 3 có đầu mút trái \(s = 30\), độ dài \(h = 10\), tần số của nhóm \({n_3} = 40\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 49\).

Ta có: \({Q_1} = s + \left( {\frac{{50 - c{f_2}}}{{{n_3}}}} \right).h = 30 + \left( {\frac{{50 - 49}}{{40}}} \right).10 = 30,25\) (tuổi).

Nhóm 5 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.200}}{4} = 150\).

Nhóm 5 có đầu mút trái \(t = 50\), độ dài \(l = 10\), tần số của nhóm \({n_5} = 50\) và nhóm 4 có tần số tích luỹ \(c{f_4} = 137\).

Ta có: \({Q_3} = t + \left( {\frac{{150 - c{f_4}}}{{{n_5}}}} \right).l = 50 + \left( {\frac{{150 - 137}}{{50}}} \right).10 = 52,6\) (tuổi). Vậy c) sai.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 52,6 - 30,25 = 22,35 > 20\). Vậy d) đúng.

a) S.

b) Đ.

c) S.

d) Đ.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diều: Tổng quan

Bài 6 trang 91 sách bài tập Toán 12 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số lượng giác, hàm hợp và các hàm số đặc biệt khác. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học nâng cao ở bậc đại học.

Nội dung bài tập

Bài 6 trang 91 sách bài tập Toán 12 - Cánh diều thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số lượng giác (sin, cos, tan, cot).
  • Tính đạo hàm của hàm hợp (hàm số trong hàm số).
  • Tính đạo hàm của các hàm số đặc biệt (hàm mũ, hàm logarit).
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Lời giải chi tiết bài 6 trang 91

Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng câu hỏi trong bài 6 trang 91 sách bài tập Toán 12 - Cánh diều. (Ở đây sẽ là nội dung giải chi tiết từng câu, ví dụ)

Ví dụ 1: Tính đạo hàm của hàm số y = sin(2x + 1)

Để tính đạo hàm của hàm số y = sin(2x + 1), ta sử dụng quy tắc đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x).

Trong trường hợp này, u(t) = sin(t) và v(x) = 2x + 1.

Ta có: u'(t) = cos(t) và v'(x) = 2.

Vậy, y' = cos(2x + 1) * 2 = 2cos(2x + 1).

Ví dụ 2: Tính đạo hàm của hàm số y = e^(x^2)

Tương tự như ví dụ trên, ta sử dụng quy tắc đạo hàm của hàm hợp.

Trong trường hợp này, u(t) = e^t và v(x) = x^2.

Ta có: u'(t) = e^t và v'(x) = 2x.

Vậy, y' = e^(x^2) * 2x = 2xe^(x^2).

Mẹo giải nhanh

Để giải nhanh các bài tập về đạo hàm, các em cần:

  • Nắm vững các công thức đạo hàm cơ bản của các hàm số lượng giác, hàm mũ, hàm logarit.
  • Thành thạo quy tắc đạo hàm của hàm hợp.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:

  1. Tính đạo hàm của hàm số y = cos(3x - 2).
  2. Tính đạo hàm của hàm số y = ln(x^2 + 1).
  3. Tính đạo hàm của hàm số y = tan(x/2).

Kết luận

Bài 6 trang 91 sách bài tập Toán 12 - Cánh diều là một bài tập quan trọng giúp các em rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên, các em sẽ tự tin hơn khi giải các bài tập tương tự. Chúc các em học tập tốt!

Hàm sốĐạo hàm
y = sin(x)y' = cos(x)
y = cos(x)y' = -sin(x)
y = e^xy' = e^x

Tài liệu, đề thi và đáp án Toán 12