Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 92 trang 40 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).
Đề bài
Giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số \(y = x - 2\sin x\) trên đoạn \(\left[ {0;\pi } \right]\) lần lượt là:
A. \(M = \pi ,m = \frac{\pi }{3} - \sqrt 3 \)
B. \(M = \pi ,m = 0\)
C. \(M = \pi ,m = \frac{\pi }{6} - 1\)
D. \(M = \pi ,m = \frac{{2\pi }}{3} - \sqrt 3 \)
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).
Lời giải chi tiết
Ta có: \(y' = 1 - 2\cos x\)
Khi đó, trên đoạn \(\left[ {0;\pi } \right]\), \(y' = 0\) khi \(x = \frac{\pi }{3}\).
\(y\left( 0 \right) = 0;y\left( {\frac{\pi }{3}} \right) = \frac{\pi }{3} - \sqrt 3 ;y\left( \pi \right) = \pi \).
Vậy \(M = \mathop {\max }\limits_{\left[ {0;\pi } \right]} y = \pi \) tại \(x = \pi \); \(m = \mathop {\min }\limits_{\left[ {0;\pi } \right]} y = \frac{\pi }{3} - \sqrt 3 \) tại \(x = \frac{\pi }{3}\).
Chọn A.
Bài 92 trang 40 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài tập 92 thường bao gồm các dạng bài sau:
Để giải bài tập 92 trang 40 sách bài tập Toán 12 Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết trên, bạn sẽ tự tin giải quyết bài tập 92 trang 40 sách bài tập Toán 12 Cánh Diều một cách hiệu quả. Chúc bạn học tốt!