Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 66 trang 26 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Tốc độ đánh máy trung bình (S) (tính bằng từ trên phút) của một học viên sau (t) tuần học được cho bởi công thức: (Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) với (t > 0). a) Xem (y = Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về tốc độ đánh máy trung bình của học viên đó khi thời gian (t) càng lớn.
Đề bài
Tốc độ đánh máy trung bình \(S\) (tính bằng từ trên phút) của một học viên sau \(t\) tuần học được cho bởi công thức: \(S\left( t \right) = \frac{{100{t^2}}}{{65 + {t^2}}}\) với \(t > 0\).
a) Xem \(y = S\left( t \right) = \frac{{100{t^2}}}{{65 + {t^2}}}\) là một hàm số xác định trên khoảng \(\left( {0; + \infty } \right)\), hãy tìm tiệm cận ngang của đồ thị hàm số đó.
b) Nêu nhận xét về tốc độ đánh máy trung bình của học viên đó khi thời gian \(t\) càng lớn.
Phương pháp giải - Xem chi tiết
Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
a) Ta có:
\(\mathop {\lim }\limits_{t \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{100{t^2}}}{{65 + {t^2}}} = 100\)
Vậy \(y = 100\) là tiệm cận ngang của đồ thị hàm số đã cho.
b) Do đường thẳng \(y = 100\) là tiệm cận ngang của đồ thị hàm số \(y = S\left( t \right)\) nên khi \(t\) càng lớn thì tốc độ đánh máy trung bình của học viên đó sẽ tiến gần đến mức 100 từ/phút và không thể vượt mức 100 từ/phút cho dù thời gian \(t\) có kéo dài đến vô cùng.
Bài 66 trang 26 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm hợp, và các phương pháp giải phương trình, bất phương trình để tìm ra nghiệm và đánh giá tính chất của hàm số.
Để giải quyết bài 66 trang 26 một cách hiệu quả, trước tiên cần nắm vững các kiến thức sau:
Bài 66 thường bao gồm nhiều câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một bước trong quá trình giải quyết bài toán. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi:
Để tính đạo hàm của hàm số f(x), ta áp dụng các quy tắc tính đạo hàm đã học. Ví dụ, nếu f(x) là một hàm đa thức, ta sử dụng quy tắc đạo hàm của hàm đa thức. Nếu f(x) là hàm hợp, ta sử dụng quy tắc đạo hàm của hàm hợp.
Để tìm các điểm cực trị của hàm số f(x), ta thực hiện các bước sau:
Để khảo sát sự biến thiên của hàm số f(x), ta thực hiện các bước sau:
Giả sử bài 66 yêu cầu giải hàm số f(x) = x3 - 3x2 + 2. Ta sẽ thực hiện các bước sau:
Khi giải bài tập về đạo hàm và ứng dụng của đạo hàm, cần lưu ý những điều sau:
Bài 66 trang 26 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!