Logo Header
  1. Môn Toán
  2. Giải bài 17 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 17 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho hình chóp (S.ABC) thoả mãn (widehat {ASB} = widehat {BSC} = widehat {CSA} = {90^ circ }). Gọi (H) là hình chiếu vuông góc của (S) trên mặt phẳng (left( {ABC} right)). Chứng minh rằng (frac{1}{{S{H^2}}} = frac{1}{{S{A^2}}} + frac{1}{{S{B^2}}} + frac{1}{{S{C^2}}}).

Đề bài

Cho hình chóp \(S.ABC\) thoả mãn \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {90^ \circ }\). Gọi \(H\) là hình chiếu vuông góc của \(S\) trên mặt phẳng \(\left( {ABC} \right)\). Chứng minh rằng

\(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}}\).

Phương pháp giải - Xem chi tiếtGiải bài 17 trang 48 sách bài tập toán 12 - Cánh diều 1

Gắn vào hệ trục toạ độ và sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

Lời giải chi tiết

Đặt \(SA = a,SB = b,SC = c\left( {a,b,c > 0} \right)\). Vì các đường thẳng \(SA,SB,SC\) đôi một vuông góc nên có thể gắn hệ trục toạ độ \(Oxyz\) thoả mãn \(S\left( {0;0;0} \right),A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\).

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) hay \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0\).

Khi đó: \(SH = d\left( {S,\left( {ABC} \right)} \right) = \frac{{\left| {\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{b}} \right)}^2} + {{\left( {\frac{1}{c}} \right)}^2}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}\).

Vậy \(\frac{1}{{S{H^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 17 trang 48 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 17 trang 48 thường bao gồm các dạng bài tập sau:

  • Bài tập về hàm số: Xác định tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số.
  • Bài tập về đạo hàm: Tính đạo hàm, ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu.
  • Bài tập về tích phân: Tính tích phân, ứng dụng tích phân để tính diện tích hình phẳng.
  • Bài tập về số phức: Thực hiện các phép toán với số phức, giải phương trình bậc hai với hệ số phức.
  • Bài tập về hình học không gian: Tính khoảng cách, góc giữa hai đường thẳng, hai mặt phẳng.

Phương pháp giải bài tập

Để giải bài tập hiệu quả, học sinh cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, định lý, công thức liên quan đến chủ đề bài tập.
  2. Phân tích đề bài: Xác định rõ yêu cầu của đề bài, các dữ kiện đã cho và các đại lượng cần tìm.
  3. Lựa chọn phương pháp giải phù hợp: Áp dụng các công thức, định lý, kỹ năng giải toán đã học để giải quyết bài tập.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả giải bài tập là chính xác và hợp lý.

Lời giải chi tiết bài 17 trang 48

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều:

Câu 1: (Ví dụ minh họa)

Cho hàm số y = x3 - 3x2 + 2. Tìm tập xác định và tập giá trị của hàm số.

Lời giải:

  • Tập xác định: Vì hàm số là hàm đa thức nên tập xác định của hàm số là R.
  • Tập giá trị: Để tìm tập giá trị, ta xét đạo hàm của hàm số: y' = 3x2 - 6x = 3x(x - 2).
  • Giải phương trình y' = 0, ta được x = 0 và x = 2.
  • Lập bảng biến thiên của hàm số, ta thấy hàm số đạt cực đại tại x = 0 với giá trị y = 2 và đạt cực tiểu tại x = 2 với giá trị y = -2.
  • Vậy tập giá trị của hàm số là (-∞, -2] ∪ [2, +∞).

Câu 2: (Ví dụ minh họa)

Tính tích phân ∫01 x2 dx.

Lời giải:

01 x2 dx = [x3/3]01 = (13/3) - (03/3) = 1/3.

Lưu ý khi giải bài tập

Trong quá trình giải bài tập, học sinh cần lưu ý:

  • Đọc kỹ đề bài và hiểu rõ yêu cầu.
  • Sử dụng đúng các công thức, định lý và kỹ năng giải toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Tham khảo các tài liệu học tập, sách giáo khoa, sách bài tập để củng cố kiến thức.

Kết luận

Bài 17 trang 48 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh ôn tập và củng cố kiến thức về các chủ đề đã học. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12