Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 39 trang 77 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em học sinh hiểu rõ hơn về bài học.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ các em trong quá trình học tập môn Toán.
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho (Aleft( {1;0;1} right),Bleft( {2;1;2} right),Cleft( {1; - 1;1} right)). a) Ba điểm (A,B,C) thẳng hàng. b) Toạ độ điểm (D) thoả mãn (overrightarrow {AB} = overrightarrow {DC} ) là (Dleft( {0;2; - 1} right)). c) Độ dài (BC) bằng 2. d) (cos widehat {BAC}) bằng ( - frac{1}{{sqrt 3 }}).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right),C\left( {1; - 1;1} \right)\).a) Ba điểm \(A,B,C\) thẳng hàng. b) Toạ độ điểm \(D\) thoả mãn \(\overrightarrow {AB} = \overrightarrow {DC} \) là \(D\left( {0;2; - 1} \right)\). c) Độ dài \(BC\) bằng 2. d) \(\cos \widehat {BAC}\) bằng \( - \frac{1}{{\sqrt 3 }}\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} = \left( {1;1;1} \right),\overrightarrow {AC} = \left( {0; - 1;0} \right),k\overrightarrow {AC} = \left( {0; - k;0} \right)\).
Suy ra \(\overrightarrow {AB} \ne k\overrightarrow {AC} ,\forall k \in \mathbb{R}\).
Vậy ba điểm \(A,B,C\) không thẳng hàng.
Vậy a) sai.
Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\).
\(\overrightarrow {DC} = \left( {1 - {x_D}; - 1 - {y_D};1 - {z_D}} \right)\)
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = 1 - {x_D}\\1 = - 1 - {y_D}\\1 = 1 - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = - 2\\{z_D} = 0\end{array} \right.\).
Vậy \(D\left( {0; - 2;0} \right)\). Vậy b) sai.
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( { - 1 - 1} \right)}^2} + {{\left( {1 - 2} \right)}^2}} = \sqrt 6 \). Vậy c) sai.
\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.0 + 1.\left( { - 1} \right) + 1.0}}{{\sqrt {{1^2} + {1^2} + {1^2}} .\sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = - \frac{1}{{\sqrt 3 }}\). Vậy d) đúng.
a) S
b) S
c) S
d) Đ
Bài 39 trang 77 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học môn Toán lớp 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 39 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh giải quyết bài tập này một cách hiệu quả, Giaitoan.edu.vn xin cung cấp lời giải chi tiết cho từng câu hỏi:
Đề bài: Giải phương trình log2(x + 1) = 3
Lời giải:
Đề bài: Tính đạo hàm của hàm số y = x3 - 2x2 + 5x - 1
Lời giải:
y' = 3x2 - 4x + 5
Để giải bài tập Toán 12 hiệu quả, các em cần:
Ngoài Sách bài tập Toán 12 - Cánh Diều, các em có thể tham khảo thêm các tài liệu sau:
Bài 39 trang 77 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp các em củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán.