Logo Header
  1. Môn Toán
  2. Giải bài 58 trang 29 sách bài tập toán 12 - Cánh diều

Giải bài 58 trang 29 sách bài tập toán 12 - Cánh diều

Giải bài 58 trang 29 Sách bài tập Toán 12 - Cánh Diều

Bài 58 trang 29 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài 58 trang 29, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho đồ thị các hàm số (y = fleft( x right),y = gleft( x right)) và gọi (S) là diện tích hình phẳng được tô màu như Hình 16. a) (S = intlimits_1^2 {left[ {fleft( x right) - gleft( x right)} right]dx} ). b) (S = intlimits_0^2 {left[ {fleft( x right) - gleft( x right)} right]dx} ). c) (S = intlimits_1^2 {left[ {gleft( x right) - fleft( x right)} right]dx} ). d) (S = intlimits_1^2 {left|

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho đồ thị các hàm số \(y = f\left( x \right),y = g\left( x \right)\) và gọi \(S\) là diện tích hình phẳng được tô màu như Hình 16.

a) \(S = \int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \).

b) \(S = \int\limits_0^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \).

c) \(S = \int\limits_1^2 {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} \).

d) \(S = \int\limits_1^2 {\left| {g\left( x \right) - f\left( x \right)} \right|dx} \).

Giải bài 58 trang 29 sách bài tập toán 12 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 58 trang 29 sách bài tập toán 12 - Cánh diều 2

Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Lời giải chi tiết

Hình phẳng đã cho được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = 1,x = 2\).

Diện tích hình phẳng được tính theo công thức:

\(S = \int\limits_1^2 {\left| {g\left( x \right) - f\left( x \right)} \right|dx} = \int\limits_1^2 {\left| {f\left( x \right) - g\left( x \right)} \right|dx} = \int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)

(vì \(f\left( x \right) > g\left( x \right),\forall x \in \left[ {1;2} \right]\))

Vậy s) đúng, b) sai, c) sai, d) đúng.

a) Đ.

b) S.

c) S.

d) Đ.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 58 trang 29 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 58 trang 29 Sách bài tập Toán 12 - Cánh Diều: Tổng quan và Phương pháp giải

Bài 58 trang 29 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường tập trung vào việc tìm đạo hàm, xét tính đơn điệu và cực trị của hàm số, cũng như ứng dụng đạo hàm để giải quyết các bài toán tối ưu hóa.

Nội dung bài tập 58 trang 29

Bài tập 58 thường bao gồm các dạng bài sau:

  • Tìm đạo hàm của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Tìm cực đại, cực tiểu của hàm số.
  • Giải các bài toán tối ưu hóa (tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước).

Phương pháp giải bài tập 58 trang 29

Để giải quyết bài tập 58 trang 29 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) và quy tắc tính đạo hàm của hàm hợp.
  2. Điều kiện đơn điệu của hàm số: Hàm số f(x) đồng biến trên khoảng (a, b) khi và chỉ khi f'(x) > 0 với mọi x thuộc (a, b). Hàm số f(x) nghịch biến trên khoảng (a, b) khi và chỉ khi f'(x) < 0 với mọi x thuộc (a, b).
  3. Điều kiện cực trị của hàm số: Nếu f'(x) = 0 và f''(x) > 0 thì x là điểm cực tiểu của hàm số. Nếu f'(x) = 0 và f''(x) < 0 thì x là điểm cực đại của hàm số.
  4. Ứng dụng đạo hàm để giải bài toán tối ưu hóa: Tìm đạo hàm của hàm số, giải phương trình f'(x) = 0 để tìm các điểm cực trị. So sánh giá trị của hàm số tại các điểm cực trị và tại các đầu mút của khoảng để tìm giá trị lớn nhất và giá trị nhỏ nhất.

Ví dụ minh họa giải bài 58 trang 29

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đơn điệu và cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định khoảng đơn điệu:
    • Với x < 0, y' > 0 nên hàm số đồng biến trên (-∞, 0).
    • Với 0 < x < 2, y' < 0 nên hàm số nghịch biến trên (0, 2).
    • Với x > 2, y' > 0 nên hàm số đồng biến trên (2, +∞).
  4. Kết luận: Hàm số có cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số có cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài tập 58 trang 29

Khi giải bài tập 58 trang 29, bạn cần chú ý:

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng các quy tắc tính đạo hàm và các điều kiện đơn điệu, cực trị của hàm số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt về đạo hàm và giải bài tập 58 trang 29, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Hy vọng với những hướng dẫn chi tiết trên, bạn sẽ tự tin giải quyết bài 58 trang 29 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12