Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 53 trang 67 Sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Cho mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính 2. a) Lập phương trình mặt cầu \(\left( S \right)\). b) Lấy các điểm \(A\left( {1;0; - 1} \right)\) và \(B\left( {1;1;0} \right)\). Lập phương trình đường thẳng \(AB\). Tìm toạ độ các điểm \(C\) và \(D\) là giao điểm của đường thẳng \(AB\) và mặt cầu \(\left( S \right)\).
Đề bài
Cho mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính 2.
a) Lập phương trình mặt cầu \(\left( S \right)\).
b) Lấy các điểm \(A\left( {1;0; - 1} \right)\) và \(B\left( {1;1;0} \right)\). Lập phương trình đường thẳng \(AB\). Tìm toạ độ các điểm \(C\) và \(D\) là giao điểm của đường thẳng \(AB\) và mặt cầu \(\left( S \right)\).
Phương pháp giải - Xem chi tiết
‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
‒ Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
a) Phương trình của mặt cầu tâm \(O\left( {0;0;0} \right)\) và bán kính 2 là:
\({x^2} + {y^2} + {z^2} = {2^2}\) hay \({x^2} + {y^2} + {z^2} = 4\).
b) Ta có \(\overrightarrow {AB} = \left( {0;1;1} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\).
Đường thẳng đi qua điểm \(A\left( {1;0; - 1} \right)\) và nhận \(\overrightarrow {AB} = \left( {0;1;1} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 1\\y = t\\z = - 1 + t\end{array} \right.\).
Điểm \(C\) là giao điểm của đường thẳng \(AB\) và mặt cầu nên điểm \(C\) nằm trên đường thẳng \(AB\). Vậy điểm \(C\) có toạ độ là: \(C\left( {1;t; - 1 + t} \right)\)
Điểm \(C\) nằm trên mặt cầu nên ta có: \({1^2} + {t^2} + {\left( { - 1 + t} \right)^2} = 4\) hay \(2{t^2} - 2t - 2 = 0\).
Suy ra \(t = \frac{{1 + \sqrt 5 }}{2}\) hoặc \(t = \frac{{1 - \sqrt 5 }}{2}\).
Vậy toạ độ giao điểm của đường thẳng \(AB\) và mặt cầu là: \(C\left( {1;\frac{{1 + \sqrt 5 }}{2};\frac{{ - 1 + \sqrt 5 }}{2}} \right)\) và \(D\left( {1;\frac{{1 - \sqrt 5 }}{2};\frac{{ - 1 - \sqrt 5 }}{2}} \right)\).
Bài 53 trang 67 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học môn Toán lớp 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 53 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh giải quyết bài tập một cách hiệu quả, Giaitoan.edu.vn xin cung cấp lời giải chi tiết cho từng câu hỏi trong bài 53 trang 67 Sách bài tập Toán 12 Cánh Diều.
Đề bài: Giải phương trình log2(x + 1) = 3
Lời giải:
Đề bài: Tính đạo hàm của hàm số y = x3 - 2x2 + 5x - 1
Lời giải:
Sử dụng quy tắc đạo hàm của tổng và tích, ta có:
y' = 3x2 - 4x + 5
Để học Toán 12 hiệu quả, các em nên:
Việc giải bài tập Toán 12 không chỉ giúp các em củng cố kiến thức mà còn rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề. Đây là những kỹ năng quan trọng không chỉ trong học tập mà còn trong cuộc sống.
Hy vọng rằng lời giải chi tiết bài 53 trang 67 Sách bài tập Toán 12 Cánh Diều của Giaitoan.edu.vn sẽ giúp các em học sinh học tập tốt hơn. Chúc các em thành công!
Chủ đề | Nội dung |
---|---|
Kiến thức liên quan | Hàm số, phương trình, logarit, đạo hàm |
Kỹ năng cần thiết | Giải phương trình, tính đạo hàm, áp dụng công thức |