Bài 60 trang 25 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 60 trang 25 Sách bài tập Toán 12 - Cánh Diều, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Số đường tiệm cận của đồ thị hàm số (y = frac{{{x^2} - 1}}{{{x^2} + 1}}) là: A. 1. B. 2. C. 3. D. 0.
Đề bài
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{{x^2} + 1}}\) là:
A. 1.
B. 2.
C. 3.
D. 0.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\). Vậy hàm số không có tiệm cận đứng.
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 1}}{{{x^2} + 1}} = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 1}}{{{x^2} + 1}} = 1\)
Vậy \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
Vậy hàm số có 1 đường tiệm cận.
Chọn A.
Bài 60 trang 25 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường tập trung vào việc tìm đạo hàm, xét tính đơn điệu và cực trị của hàm số, cũng như ứng dụng đạo hàm để giải quyết các bài toán tối ưu hóa.
Bài 60 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 60 trang 25 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, học sinh cần:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Giải:
Khi giải bài tập về đạo hàm, học sinh cần chú ý:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 60 trang 25 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững kiến thức lý thuyết, luyện tập thường xuyên và sử dụng các công cụ hỗ trợ, học sinh có thể giải quyết bài tập này một cách hiệu quả và đạt kết quả tốt trong kỳ thi.