Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 48 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 11 trang 48 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải các bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Lập phương trình mặt phẳng đi qua ba điểm (Aleft( {5;0;0} right),Bleft( {0;7;0} right),Cleft( {0;0;9} right)).

Đề bài

Lập phương trình mặt phẳng đi qua ba điểm \(A\left( {5;0;0} \right),B\left( {0;7;0} \right),C\left( {0;0;9} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 48 sách bài tập toán 12 - Cánh diều 1

Phương trình mặt phẳng theo đoạn chắn: Mặt phẳng đi qua ba điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với \(abc \ne 0\) có phương trình là \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).

Lời giải chi tiết

Phương trình mặt phẳng đi qua ba điểm \(A\left( {5;0;0} \right),B\left( {0;7;0} \right),C\left( {0;0;9} \right)\) là:

\(\frac{x}{5} + \frac{y}{7} + \frac{z}{9} = 1 \Leftrightarrow 63{\rm{x}} + 45y + 35{\rm{z}} = 315 \Leftrightarrow 63{\rm{x}} + 45y + 35{\rm{z}} - 315 = 0\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 11 trang 48 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 11 trang 48 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 11 trang 48 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tìm đạo hàm, xét dấu đạo hàm và xác định các điểm cực trị của hàm số.

Nội dung bài tập

Bài 11 thường bao gồm các hàm số đa thức, hàm số hữu tỉ hoặc hàm số lượng giác. Học sinh cần thực hiện các bước sau để giải bài tập:

  1. Tính đạo hàm cấp một (y'): Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Tìm tập xác định của hàm số: Xác định các giá trị của x mà hàm số có nghĩa.
  3. Giải phương trình y' = 0: Tìm các giá trị của x làm cho đạo hàm bằng không. Đây là các điểm nghi ngờ là cực trị.
  4. Lập bảng biến thiên: Dựa vào tập xác định và dấu của đạo hàm, lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến và các điểm cực trị của hàm số.
  5. Kết luận: Dựa vào bảng biến thiên, kết luận về tính đơn điệu và các điểm cực trị của hàm số.

Ví dụ minh họa

Giả sử hàm số cần khảo sát là: y = x3 - 3x2 + 2

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Lập bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  4. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 với giá trị y = 2 và đạt cực tiểu tại x = 2 với giá trị y = -2.

Các dạng bài tập thường gặp

  • Tìm đạo hàm và khảo sát hàm số: Đây là dạng bài tập cơ bản nhất, yêu cầu học sinh tính đạo hàm, xét dấu đạo hàm và xác định các điểm cực trị.
  • Ứng dụng đạo hàm để giải các bài toán thực tế: Ví dụ như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trong một khoảng cho trước.
  • Khảo sát hàm số bậc ba, bậc bốn: Các hàm số này có thể phức tạp hơn, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức đã học.

Mẹo giải bài tập hiệu quả

  • Nắm vững các quy tắc tính đạo hàm: Đây là nền tảng để giải các bài tập về đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học Toán online uy tín

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 11 trang 48 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12