Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 10 sách bài tập Toán 12 - Cánh diều. Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán một cách hiệu quả.
Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right) = - xleft( {2x - 5} right),forall x in mathbb{R}). Khẳng định nào dưới đây đúng?
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - x\left( {2x - 5} \right),\forall x \in \mathbb{R}\). Khẳng định nào dưới đây đúng?
A. \(f\left( { - 2} \right) < f\left( { - 1} \right)\).
B. \(f\left( 0 \right) > f\left( 2 \right)\).
C. \(f\left( 3 \right) > f\left( 5 \right)\).
D. \(f\left( 3 \right) > f\left( 2 \right)\).
Phương pháp giải - Xem chi tiết
Lập bảng biến thiên, dựa vào bảng biến thiên:
‒ Hàm số đồng biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
‒ Hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
Lời giải chi tiết
\(f'\left( x \right) = 0 \Leftrightarrow - x\left( {2x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{5}{2}\end{array} \right.\)
Bảng biến thiên của hàm số:
+ Đáp án A: Hàm số nghịch biến trên \(\left( { - 2; - 1} \right)\) nên \(f\left( { - 2} \right) > f\left( { - 1} \right)\). Vậy A sai.
+ Đáp án B: Hàm số đồng biến trên \(\left( {0;2} \right)\) nên \(f\left( 0 \right) < f\left( 2 \right)\). Vậy B sai.
+ Đáp án C: Hàm số nghịch biến trên \(\left( {3;5} \right)\) nên \(f\left( 3 \right) > f\left( 5 \right)\). Vậy C đúng.
+ Đáp án D: Hàm số đồng biến trên \(\left( {2;\frac{5}{2}} \right)\) và nghịch biến trên khoảng \(\left( {\frac{5}{2};3} \right)\) nên chưa xác định được mối liên hệ giữa \(f\left( 3 \right)\) và \(f\left( 2 \right)\). Vậy D sai.
Chọn C.
Bài 3 trang 10 sách bài tập Toán 12 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc tính đạo hàm của hàm số, xét tính liên tục của hàm số và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để học tốt các chương trình toán học nâng cao hơn.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 10 sách bài tập Toán 12 - Cánh diều một cách hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Xét tính liên tục của hàm số g(x) = x2 tại x = 2.
Giải:
limx→2 g(x) = 4 và g(2) = 4. Vì limx→2 g(x) = g(2) nên hàm số g(x) liên tục tại x = 2.
Để giải nhanh các bài tập về đạo hàm, bạn có thể sử dụng các công cụ tính đạo hàm online hoặc các phần mềm toán học. Tuy nhiên, việc hiểu rõ bản chất của bài toán và nắm vững các công thức đạo hàm cơ bản vẫn là yếu tố quan trọng nhất.
Ngoài sách bài tập Toán 12 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:
Bài 3 trang 10 sách bài tập Toán 12 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!