Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 73 trang 71 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Tính góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)) (làm tròn kết quả đến hàng đơn vị), biết (left( {{P_1}} right):5x + 12y - 13z - 14 = 0) và (left( {{P_2}} right):13x - 5y - 12z + 7 = 0).
Đề bài
Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) (làm tròn kết quả đến hàng đơn vị), biết \(\left( {{P_1}} \right):5x + 12y - 13z - 14 = 0\) và \(\left( {{P_2}} \right):13x - 5y - 12z + 7 = 0\).
Phương pháp giải - Xem chi tiết
Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {5;12; - 13} \right)\).
Mặt phẳng \(\left( {{P_2}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {13; - 5; - 12} \right)\).
Côsin của góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) bằng:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {5.13 + 12.\left( { - 5} \right) - 13.\left( { - 12} \right)} \right|}}{{\sqrt {{5^2} + {{12}^2} + {{\left( { - 13} \right)}^2}} .\sqrt {{{13}^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{161}}{{338}}\).
Vậy \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) \approx {62^ \circ }\).
Bài 73 trang 71 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường bao gồm các dạng bài tập khác nhau, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức đã học để giải quyết.
Để giải quyết bài 73 trang 71 một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
Bài 73 thường được chia thành nhiều phần nhỏ, mỗi phần yêu cầu học sinh giải quyết một dạng bài tập cụ thể. Dưới đây là hướng dẫn giải chi tiết từng phần:
Để giải các bài tập về hàm số, bạn cần:
Để giải các bài tập về đạo hàm, bạn cần:
Để giải các bài tập về tích phân, bạn cần:
Để giải các bài tập về số phức, bạn cần:
Ví dụ: Giải phương trình z2 + 2z + 5 = 0
Giải:
Phương trình có dạng az2 + bz + c = 0 với a = 1, b = 2, c = 5. Tính delta: Δ = b2 - 4ac = 22 - 4 * 1 * 5 = -16
Vì Δ < 0, phương trình có hai nghiệm phức:
z1,2 = (-b ± √Δ) / 2a = (-2 ± √-16) / 2 = (-2 ± 4i) / 2 = -1 ± 2i
Vậy, phương trình có hai nghiệm phức là z1 = -1 + 2i và z2 = -1 - 2i
Bài 73 trang 71 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ giải quyết bài tập một cách hiệu quả và đạt kết quả tốt nhất.