Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 24 trang 57 Sách bài tập Toán 12 - Cánh Diều. Bài giải này được xây dựng dựa trên chương trình học Toán 12 hiện hành, đảm bảo tính chính xác và dễ hiểu.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập tốt nhất, giúp các em học sinh nắm vững kiến thức và đạt kết quả cao trong các kỳ thi.
Đường thẳng đi qua điểm (Bleft( {5; - 2;9} right)) nhận (overrightarrow u = left( { - 17;2; - 11} right)) làm vectơ chỉ phương có phương trình chính tắc là: A. (frac{{x + 5}}{{ - 17}} = frac{{y - 2}}{2} = frac{{z + 9}}{{ - 11}}). B. (frac{{x - 17}}{5} = frac{{y + 2}}{{ - 2}} = frac{{z - 11}}{9}). C. (frac{{x - 5}}{{ - 17}} = frac{{y + 2}}{2} = frac{{z - 9}}{{ - 11}}). D. (frac{{x + 17}}{5} = frac{{y - 2}}{{ - 2}} = frac{{z + 11}}{9}).
Đề bài
Đường thẳng đi qua điểm \(B\left( {5; - 2;9} \right)\) nhận \(\overrightarrow u = \left( { - 17;2; - 11} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:
A. \(\frac{{x + 5}}{{ - 17}} = \frac{{y - 2}}{2} = \frac{{z + 9}}{{ - 11}}\).
B. \(\frac{{x - 17}}{5} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 11}}{9}\).
C. \(\frac{{x - 5}}{{ - 17}} = \frac{{y + 2}}{2} = \frac{{z - 9}}{{ - 11}}\).
D. \(\frac{{x + 17}}{5} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 11}}{9}\).
Phương pháp giải - Xem chi tiết
Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).
Lời giải chi tiết
Đường thẳng đi qua điểm \(B\left( {5; - 2;9} \right)\) nhận \(\overrightarrow u = \left( { - 17;2; - 11} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 5}}{{ - 17}} = \frac{{y + 2}}{2} = \frac{{z - 9}}{{ - 11}}\).
Chọn C.
Bài 24 trang 57 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán liên quan đến đạo hàm trong chương trình Toán 12.
Bài 24 bao gồm một số câu hỏi trắc nghiệm và bài tập tự luận. Các câu hỏi trắc nghiệm thường yêu cầu học sinh lựa chọn đáp án đúng trong các phương án cho trước, đòi hỏi sự hiểu biết về các khái niệm và công thức đạo hàm. Các bài tập tự luận yêu cầu học sinh tính đạo hàm của các hàm số phức tạp, áp dụng các quy tắc đạo hàm đã học.
Để giải bài tập này một cách hiệu quả, học sinh cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Tính đạo hàm của hàm số g(x) = sin(x) * cos(x).
Giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Để củng cố kiến thức về đạo hàm, học sinh có thể tự giải các bài tập tương tự trong sách bài tập Toán 12 - Cánh Diều hoặc các tài liệu tham khảo khác.
Bài 24 trang 57 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm của hàm số. Việc nắm vững các quy tắc đạo hàm và áp dụng chúng một cách linh hoạt sẽ giúp học sinh giải quyết các bài toán liên quan đến đạo hàm một cách hiệu quả.
Hàm số | Đạo hàm |
---|---|
f(x) = c (hằng số) | f'(x) = 0 |
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |