Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 24 trang 15 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Tìm: a) (int {{e^{5x}}} dx); b) (int {frac{1}{{{{2024}^x}}}} dx); c) (int {left( {{2^x} + {x^2}} right)} dx); d) (int {left( {{2^x}{{.3}^{2{rm{x}} + 1}}} right)} dx); e) (int {frac{{{3^x} + {4^x} + 1}}{{{5^x}}}} dx).
Đề bài
Tìm:
a) \(\int {{e^{5x}}} dx\);
b) \(\int {\frac{1}{{{{2024}^x}}}} dx\);
c) \(\int {\left( {{2^x} + {x^2}} \right)} dx\);
d) \(\int {\left( {{2^x}{{.3}^{2{\rm{x}} + 1}}} \right)} dx\);
e) \(\int {\frac{{{3^x} + {4^x} + 1}}{{{5^x}}}} dx\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng các công thức:
• \(\int {{e^x}dx} = {e^x} + C\).
• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Lời giải chi tiết
a)
\(\int {{e^{5x}}} dx = \int {{{\left( {{e^5}} \right)}^x}} dx = \frac{{{{\left( {{e^5}} \right)}^x}}}{{\ln {e^5}}} + C = \frac{{{e^{5x}}}}{5} + C\).
b)
\(\int {\frac{1}{{{{2024}^x}}}} dx = \int {{{\left( {\frac{1}{{2024}}} \right)}^x}dx} = \frac{{{{\left( {\frac{1}{{2024}}} \right)}^x}}}{{\ln \frac{1}{{2024}}}} + C = - \frac{1}{{{{2024}^x}\ln 2024}} + C\).
c) \(\int {\left( {{2^x} + {x^2}} \right)dx} = \frac{{{2^x}}}{{\ln 2}} + \frac{{{x^3}}}{3} + C\).
d) \(\int {\left( {{2^x}{{.3}^{2{\rm{x}} + 1}}} \right)dx} = \int {\left( {{2^x}.{{\left( {{3^2}} \right)}^x}.3} \right)dx} = \int {\left( {{2^x}{{.9}^x}.3} \right)dx} = 3\int {{{\left( {2.9} \right)}^x}dx} = 3\int {{{18}^x}dx} = 3.\frac{{{{18}^x}}}{{\ln 18}} + C\).
e)
\(\begin{array}{l}\int {\frac{{{3^x} + {4^x} + 1}}{{{5^x}}}dx} = \int {\left( {\frac{{{3^x}}}{{{5^x}}} + \frac{{{4^x}}}{{{5^x}}} + \frac{1}{{{5^x}}}} \right)dx} = \int {\left( {{{\left( {\frac{3}{5}} \right)}^x} + {{\left( {\frac{4}{5}} \right)}^x} + {{\left( {\frac{1}{5}} \right)}^x}} \right)dx} \\ = \frac{{{{\left( {\frac{3}{5}} \right)}^x}}}{{\ln \frac{3}{5}}} + \frac{{{{\left( {\frac{4}{5}} \right)}^x}}}{{\ln \frac{4}{5}}} + \frac{{{{\left( {\frac{1}{5}} \right)}^x}}}{{\ln \frac{1}{5}}} + C = \frac{{{3^x}}}{{{5^x}\left( {\ln 3 - \ln 5} \right)}} + \frac{{{4^x}}}{{{5^x}\left( {\ln 4 - \ln 5} \right)}} - \frac{1}{{{5^x}\ln 5}} + C\end{array}\)
Bài 24 trang 15 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường bao gồm các dạng bài tập khác nhau, đòi hỏi học sinh phải vận dụng linh hoạt các công thức, định lý và kỹ năng giải toán đã được học.
Để giải quyết bài 24 trang 15 một cách hiệu quả, trước tiên chúng ta cần xác định rõ yêu cầu của từng câu hỏi. Bài tập thường bao gồm các phần sau:
Dưới đây là hướng dẫn giải chi tiết từng câu hỏi trong bài 24 trang 15 Sách bài tập Toán 12 - Cánh Diều:
Đề bài: Giải phương trình log2(x + 1) = 3
Giải:
log2(x + 1) = 3 ⇔ x + 1 = 23 ⇔ x + 1 = 8 ⇔ x = 7
Kết luận: Phương trình có nghiệm x = 7
Đề bài: Tính đạo hàm của hàm số y = x3 - 2x2 + 5x - 1
Giải:
y' = 3x2 - 4x + 5
Kết luận: Đạo hàm của hàm số là y' = 3x2 - 4x + 5
Để giải bài tập Toán 12 hiệu quả, bạn có thể tham khảo một số mẹo sau:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 24 trang 15 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.