Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 11 sách bài tập toán 12 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, logic và dễ tiếp thu.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 4. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Đề bài
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 4. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. \(\left( { - \infty ;0} \right)\).
B. \(\left( {3; + \infty } \right)\).
C. \(\left( { - 1;1} \right)\).
D. \(\left( { - \infty ; - 1} \right)\).
Phương pháp giải - Xem chi tiết
Dựa vào đồ thị hàm số xác định các khoảng đơn điệu của hàm số:
+ Khoảng đồng biến có đồ thị “đi lên” từ trái sang phải.
+ Khoảng nghịch biến có đồ thị “đi xuống” từ trái sang phải.
Lời giải chi tiết
Dựa vào đồ thị ta có:
Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {3; + \infty } \right)\).
Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1;3} \right)\).
Chọn D.
Bài 7 trang 11 sách bài tập toán 12 - Cánh diều thuộc chương trình học toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 7 trang 11 sách bài tập toán 12 - Cánh diều thường bao gồm các dạng bài tập sau:
Để giải bài 7 trang 11 sách bài tập toán 12 - Cánh diều, bạn có thể thực hiện theo các bước sau:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm điểm cực đại và cực tiểu của hàm số.
Giải:
Kết luận: Hàm số đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).
Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 7 trang 11 sách bài tập toán 12 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!