Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 60 trang 68 Sách bài tập Toán 12 - Cánh Diều một cách dễ hiểu nhất.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu.
Vectơ nào sau đây là vectơ chỉ phương của đường thẳng (d:frac{{x - 2}}{{15}} = frac{{y + 9}}{{ - 10}} = frac{{z - 7}}{5})? A. (overrightarrow {{u_1}} = left( {2; - 9;7} right)). B. (overrightarrow {{u_2}} = left( { - 2;9; - 7} right)). C. (overrightarrow {{u_3}} = left( {15;10;5} right)). D. (overrightarrow {{u_4}} = left( {3; - 2;1} right)).
Đề bài
Vectơ nào sau đây là vectơ chỉ phương của đường thẳng \(d:\frac{{x - 2}}{{15}} = \frac{{y + 9}}{{ - 10}} = \frac{{z - 7}}{5}\)?
A. \(\overrightarrow {{u_1}} = \left( {2; - 9;7} \right)\).
B. \(\overrightarrow {{u_2}} = \left( { - 2;9; - 7} \right)\).
C. \(\overrightarrow {{u_3}} = \left( {15;10;5} \right)\).
D. \(\overrightarrow {{u_4}} = \left( {3; - 2;1} \right)\).
Phương pháp giải - Xem chi tiết
Đường thẳng \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\).
Lời giải chi tiết
Đường thẳng \(d:\frac{{x - 2}}{{15}} = \frac{{y + 9}}{{ - 10}} = \frac{{z - 7}}{5}\) có vectơ chỉ phương \(\overrightarrow u = \left( {15; - 10;5} \right) = 5\left( {3; - 2;1} \right)\).
Vậy vectơ \(\overrightarrow {{u_4}} = \left( {3; - 2;1} \right)\) cũng là vectơ chỉ phương của đường thẳng \(d\).
Chọn D.
Bài 60 trang 68 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 60 trang 68 thường bao gồm các dạng bài tập sau:
Để giải bài tập 60 trang 68 Sách bài tập Toán 12 - Cánh Diều hiệu quả, bạn cần:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đơn điệu của hàm số.
Giải:
Ta có y' = 3x2 - 6x.
Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
Lập bảng biến thiên của hàm số:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | ↗ | ↘ | ↗ |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Khi giải bài tập 60 trang 68 Sách bài tập Toán 12 - Cánh Diều, bạn cần lưu ý:
Bài 60 trang 68 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và phương pháp giải hiệu quả trên đây, bạn sẽ tự tin giải quyết bài tập này một cách thành công.