Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 30 trang 17 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. 0. B. ‒2. C. 1. D. ‒5.
Đề bài
Giá trị nhỏ nhất của hàm số \(y = \frac{{2{\rm{x}} + 1}}{{1 - x}}\) trên đoạn \(\left[ {2;3} \right]\) bằng:
A. 0.
B. ‒2.
C. 1.
D. ‒5.
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).
Lời giải chi tiết
Ta có: \(y' = \frac{3}{{{{\left( {1 - x} \right)}^2}}} > 0,\forall x \in \left[ {2;3} \right]\)
\(y\left( 2 \right) = - 5;y\left( 3 \right) = - \frac{7}{2}\).
Vậy \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = - 5\) tại \({\rm{x}} = 2\)
Chọn D.
Bài 30 trang 17 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập chương 3: Đạo hàm. Bài tập này thường bao gồm các dạng bài tập về đạo hàm của hàm số, ứng dụng đạo hàm để khảo sát hàm số, và các bài toán liên quan đến cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Bài 30 bao gồm nhiều câu hỏi trắc nghiệm và bài tập tự luận. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.
Giải:
f'(x) = 3x2 - 4x + 5
Đề bài: Tìm đạo hàm của hàm số g(x) = sin(2x) + cos(x).
Giải:
g'(x) = 2cos(2x) - sin(x)
Đề bài: Cho hàm số h(x) = ex + ln(x). Tính h'(x).
Giải:
h'(x) = ex + 1/x
Trong bài 30, có một số dạng bài tập thường gặp như:
Để giải bài tập trong bài 30 một cách chính xác và hiệu quả, học sinh cần lưu ý những điều sau:
Ngoài sách bài tập Toán 12 - Cánh Diều, học sinh có thể tham khảo thêm các tài liệu sau để ôn tập và nâng cao kiến thức về đạo hàm:
Bài 30 trang 17 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các bạn học sinh sẽ tự tin hơn khi giải các bài tập tương tự.