Logo Header
  1. Môn Toán
  2. Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều

Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều

Giải bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 30. a) Phương trình (fleft( x right) = 4) có hai nghiệm (x = - 1,x = 2). b) Phương trình (fleft( x right) = - 1) có hai nghiệm. c) Phương trình (fleft( x right) = 2) có ba nghiệm. d) Phương trình (fleft( {fleft( x right)} right) = 4) có sáu nghiệm.

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong như Hình 30.

a) Phương trình \(f\left( x \right) = 4\) có hai nghiệm \(x = - 1,x = 2\).

b) Phương trình \(f\left( x \right) = - 1\) có hai nghiệm.

c) Phương trình \(f\left( x \right) = 2\) có ba nghiệm.

d) Phương trình \(f\left( {f\left( x \right)} \right) = 4\) có sáu nghiệm.

Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 102 trang 43 sách bài tập toán 12 - Cánh diều 2

‒ Xét đồ thị hàm số.

Lời giải chi tiết

• Đường thẳng \(y = 4\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại hai điểm có hoành độ bằng ‒1 và 2 nên phương trình \(f\left( x \right) = 4\) có hai nghiệm \(x = - 1,x = 2\). Vậy a) đúng.

• Đường thẳng \(y = - 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại một điểm nên phương trình \(f\left( x \right) = - 1\) có một nghiệm. Vậy b) sai.

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại ba điểm nên phương trình \(f\left( x \right) = 2\) có ba nghiệm. Vậy c) đúng.

• Ta có: \(f\left( {f\left( x \right)} \right) = 4\) khi \(f\left( x \right) = - 1\) hoặc \(f\left( x \right) = 2\).

Với \(f\left( x \right) = - 1\), phương trình có một nghiệm.

Với \(f\left( x \right) = 2\), phương trình có ba nghiệm phân biệt. Vậy phương trình đã cho có bốn nghiệm phân biệt. Vậy d) sai.

a) Đ.

b) S.

c) Đ.

d) S.

Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều 3

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều thường bao gồm các dạng bài tập sau:

  • Xác định khoảng đơn điệu của hàm số: Yêu cầu học sinh tìm khoảng mà hàm số đồng biến hoặc nghịch biến dựa vào đạo hàm.
  • Tìm cực trị của hàm số: Yêu cầu học sinh xác định các điểm cực đại, cực tiểu của hàm số.
  • Giải phương trình, bất phương trình chứa đạo hàm: Yêu cầu học sinh sử dụng đạo hàm để giải quyết các bài toán về phương trình, bất phương trình.
  • Ứng dụng đạo hàm để giải các bài toán thực tế: Yêu cầu học sinh vận dụng đạo hàm để giải quyết các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất.

Lời giải chi tiết bài 102 trang 43

Để giúp bạn hiểu rõ hơn về cách giải bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng dạng bài tập.

Dạng 1: Xác định khoảng đơn điệu của hàm số

Ví dụ: Xét hàm số y = x3 - 3x2 + 2. Tìm khoảng đơn điệu của hàm số.

Lời giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm nghiệm của phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu y':
    x-∞02+∞
    y'+-+
    yNBĐBNB
  4. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Dạng 2: Tìm cực trị của hàm số

Ví dụ: Xét hàm số y = x4 - 4x3 + 4x2 + 1. Tìm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm: y' = 4x3 - 12x2 + 8x
  2. Tìm nghiệm của phương trình y' = 0: 4x3 - 12x2 + 8x = 0 => x = 0, x = 1, x = 2
  3. Lập bảng xét dấu y': (Tương tự như ví dụ trên)
  4. Kết luận: Hàm số đạt cực đại tại x = 1 với giá trị y = 2, đạt cực tiểu tại x = 0 và x = 2 với giá trị y = 1.

Mẹo giải bài tập

  • Nắm vững kiến thức về đạo hàm: Hiểu rõ các công thức tính đạo hàm, quy tắc đạo hàm và ứng dụng của đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm toán học để kiểm tra kết quả và tiết kiệm thời gian.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Kết luận

Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập trên, bạn đã có thể tự tin giải bài 102 trang 43 Sách bài tập Toán 12 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12