Logo Header
  1. Môn Toán
  2. Giải bài 61 trang 68 sách bài tập toán 12 - Cánh diều

Giải bài 61 trang 68 sách bài tập toán 12 - Cánh diều

Giải bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Mặt cầu (left( S right):{left( {x - 23} right)^2} + {left( {y - 8} right)^2} + {left( {z - 44} right)^2} = 81) có bán kính bằng: A. 23. B. 9. C. 8. D. 44.

Đề bài

Mặt cầu \(\left( S \right):{\left( {x - 23} \right)^2} + {\left( {y - 8} \right)^2} + {\left( {z - 44} \right)^2} = 81\) có bán kính bằng:

A. 23.

B. 9.

C. 8.

D. 44.

Phương pháp giải - Xem chi tiếtGiải bài 61 trang 68 sách bài tập toán 12 - Cánh diều 1

Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

Lời giải chi tiết

Mặt cầu \(\left( S \right):{\left( {x - 23} \right)^2} + {\left( {y - 8} \right)^2} + {\left( {z - 44} \right)^2} = 81\) có bán kính \(R = \sqrt {81} = 9\).

Chọn B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 61 trang 68 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 61 thường bao gồm các dạng bài tập sau:

  • Bài tập về đạo hàm của hàm số lượng giác: Yêu cầu tính đạo hàm của các hàm số chứa các hàm lượng giác như sin, cos, tan, cot.
  • Bài tập về đạo hàm của hàm hợp: Yêu cầu tính đạo hàm của các hàm số được tạo thành từ việc hợp các hàm số khác nhau.
  • Bài tập về ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình.
  • Bài tập về ứng dụng đạo hàm để tìm cực trị: Xác định các điểm cực trị của hàm số và giá trị cực đại, cực tiểu.

Lời giải chi tiết bài 61 trang 68

Để giải bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Xác định rõ hàm số cần tính đạo hàm hoặc phân tích.
  2. Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số.
  3. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có được kết quả cuối cùng.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ, xét bài tập sau:

Tính đạo hàm của hàm số y = sin(2x + 1)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp, ta có:

y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)

Mẹo giải bài tập

Để giải bài tập về đạo hàm hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm: Hiểu rõ và ghi nhớ các quy tắc tính đạo hàm của các hàm số cơ bản và các quy tắc đạo hàm hợp.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm tính toán để kiểm tra kết quả và tiết kiệm thời gian.
  • Tham khảo các nguồn tài liệu: Đọc sách giáo khoa, sách bài tập, các bài giảng online để nắm vững kiến thức và tìm hiểu các phương pháp giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.
  • Thống kê: Phân tích dữ liệu, dự đoán xu hướng.

Kết luận

Bài 61 trang 68 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các bạn học sinh sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12